针对不同敏感值的隐私保护程度需求,提出一种敏感度计算方法,将敏感值进行等级划分,再对不同等级的敏感值设定不同的敏感度;给出一种隐私保护原则(ε,k)-sensitivity来控制等价类中敏感度的分布情况,使得等价类中高敏感度的元组不会过...针对不同敏感值的隐私保护程度需求,提出一种敏感度计算方法,将敏感值进行等级划分,再对不同等级的敏感值设定不同的敏感度;给出一种隐私保护原则(ε,k)-sensitivity来控制等价类中敏感度的分布情况,使得等价类中高敏感度的元组不会过多而造成隐私泄露;提出一种最小信息损失增量优先算法(minimum information loss increment first,MILIF)来实现隐私保护的要求。研究结果表明:所提出的方法在降低少量时间和保持数据效用的前提下,充分提高了数据表抵御敏感性攻击的能力。展开更多
文摘针对不同敏感值的隐私保护程度需求,提出一种敏感度计算方法,将敏感值进行等级划分,再对不同等级的敏感值设定不同的敏感度;给出一种隐私保护原则(ε,k)-sensitivity来控制等价类中敏感度的分布情况,使得等价类中高敏感度的元组不会过多而造成隐私泄露;提出一种最小信息损失增量优先算法(minimum information loss increment first,MILIF)来实现隐私保护的要求。研究结果表明:所提出的方法在降低少量时间和保持数据效用的前提下,充分提高了数据表抵御敏感性攻击的能力。