The simplified four-qubit cluster state (i.e., (|0000〉 + |0011〉 + |1100〉 -|1111〉)/2) is explored for splitting an arbitrary single-qubit quantum information (QI). Various feasible distributions of the ...The simplified four-qubit cluster state (i.e., (|0000〉 + |0011〉 + |1100〉 -|1111〉)/2) is explored for splitting an arbitrary single-qubit quantum information (QI). Various feasible distributions of the four qubits among the Q,I sender and receivers for tri-splitting or hi-splitting are found out. For the distribution representations the corresponding splitting schemes and their LOCCs (local operation and classical communication) are presented amply while others are mentioned concisely.展开更多
基金Supported by the Program for New Century Excellent Talents at the University of China under Grant No.NCET-06-0554the National Natural Science Foundation of China under Grant Nos.10975001,60677001,10747146,and 10874122+3 种基金the Science-technology Fund of Anhui Province for Outstanding Youth under Grant No.06042087the Key Fund of the Ministry of Education of China under Grant No.206063 the General Fund of the Educational Committee of Anhui Province under Grant No.2006KJ260Bthe Natural Science Foundation of Guangdong Province under Grant Nos.06300345 and 7007806
文摘The simplified four-qubit cluster state (i.e., (|0000〉 + |0011〉 + |1100〉 -|1111〉)/2) is explored for splitting an arbitrary single-qubit quantum information (QI). Various feasible distributions of the four qubits among the Q,I sender and receivers for tri-splitting or hi-splitting are found out. For the distribution representations the corresponding splitting schemes and their LOCCs (local operation and classical communication) are presented amply while others are mentioned concisely.