期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
基于无信息变量和偏最小二乘投影分析的高光谱散射图像最优波段选择 被引量:10
1
作者 王爽 黄敏 朱启兵 《光子学报》 EI CAS CSCD 北大核心 2011年第3期428-432,共5页
提出了一种无信息变量消除和偏最小二乘投影分析相结合的苹果高光谱散射图像最优波段选择方法.经该算法提取后的波段降为全谱的26%,将选择后的波段作为输入变量建立了苹果硬度的偏最小二乘预测模型.预测均方根误差由6.00N降为5.73N,相... 提出了一种无信息变量消除和偏最小二乘投影分析相结合的苹果高光谱散射图像最优波段选择方法.经该算法提取后的波段降为全谱的26%,将选择后的波段作为输入变量建立了苹果硬度的偏最小二乘预测模型.预测均方根误差由6.00N降为5.73N,相关系数也有所提高,并与遗传算法作了比较.结果表明,该算法能有效消除原光谱矩阵中冗余的信息,且不存在遗传算法中的参量选择随机性等缺点.该算法为高光谱散射图像最优波段选择提供了一个理想的方法. 展开更多
关键词 信息变量和偏最小二乘投影算法 高光谱图像技术 波段选择 无损检测
下载PDF
基于自适应CEEMD的非平稳信号分析方法 被引量:8
2
作者 徐波 黎会鹏 +3 位作者 周凤星 严保康 严丹 刘毅 《振动.测试与诊断》 EI CSCD 北大核心 2020年第1期54-61,203,共9页
由于标准的互补集总经验模态分解(complementary ensemble empirical mode decomposition,简称CEEMD)在处理模态混叠问题时缺乏自适应性,其本质是分解信号获得的本征模态函数(intrinsic mode function,简称IMF)之间产生了一定的信息耦... 由于标准的互补集总经验模态分解(complementary ensemble empirical mode decomposition,简称CEEMD)在处理模态混叠问题时缺乏自适应性,其本质是分解信号获得的本征模态函数(intrinsic mode function,简称IMF)之间产生了一定的信息耦合现象,使IMF分量不能正确地反映信号的真实成分。因此,提出了在使用CEEMD分解信号的过程中嵌入网格搜索算法(grid search algorithm,简称GSA),以最小二乘互信息(least squares mutual information,简称LSMI)为网格搜索算法的适应度函数,构造一个自适应CEEMD方法。该算法通过自适应地搜索最佳的白噪声幅值,修正信号分解过程中产生的少量的耦合频率成分,确保每个IMF分量之间信息的正交性,以进一步抑制模态混叠问题。最后,通过仿真实验验证了该方法的有效性,并将该方法用于提取滚动轴承微故障的特征频率。实验结果表明,该算法在滚动轴承的微故障特征提取应用中具有更少的迭代数、IMF分量以及相对更小的计算量。 展开更多
关键词 互补集总经验模态分解 模态混叠 最小二乘信息 网格搜索算法 微故障特征提取
下载PDF
Improved Kernel PLS-based Fault Detection Approach for Nonlinear Chemical Processes 被引量:5
3
作者 王丽 侍洪波 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2014年第6期657-663,共7页
In this paper, an improved nonlinear process fault detection method is proposed based on modified kernel partial least squares(KPLS). By integrating the statistical local approach(SLA) into the KPLS framework, two new... In this paper, an improved nonlinear process fault detection method is proposed based on modified kernel partial least squares(KPLS). By integrating the statistical local approach(SLA) into the KPLS framework, two new statistics are established to monitor changes in the underlying model. The new modeling strategy can avoid the Gaussian distribution assumption of KPLS. Besides, advantage of the proposed method is that the kernel latent variables can be obtained directly through the eigen value decomposition instead of the iterative calculation, which can improve the computing speed. The new method is applied to fault detection in the simulation benchmark of the Tennessee Eastman process. The simulation results show superiority on detection sensitivity and accuracy in comparison to KPLS monitoring. 展开更多
关键词 nonlinear process fault detection kernel partial least squares statistical local approach
下载PDF
A RBF Network Learning Scheme Using Immune Algorithm Based on Information Entropy
4
作者 宫新保 臧小刚 周希朗 《Journal of Donghua University(English Edition)》 EI CAS 2005年第1期37-40,共4页
A hybrid learning method combining immune algorithm and least square method is proposed to design the radial basis function(RBF) networks. The immune algorithm based on information entropy is used to determine the str... A hybrid learning method combining immune algorithm and least square method is proposed to design the radial basis function(RBF) networks. The immune algorithm based on information entropy is used to determine the structure and parameters of RBF nonlinear hidden layer, and weights of RBF linear output layer are computed with least square method. By introducing the diversity control and immune memory mechanism, the algorithm improves the efficiency and overcomes the immature problem in genetic algorithm. Computer simulations demonstrate that the RBF networks designed in this method have fast convergence speed with good performances. 展开更多
关键词 radial basis function networks immune algorithm least square method.
下载PDF
Semi-Blind Pilot-Aided Channel Estimation in Uplink Cloud Radio Access Networks 被引量:1
5
作者 Yourong Ban Qiang Hu +1 位作者 Zhendong Mao Zhongyuan Zhao 《China Communications》 SCIE CSCD 2016年第9期72-79,共8页
In this paper, a quasi-Newton method fbr semi-blind estimation is derived for channel estimation in uplink cloud radio access networks (C-RANs). Different from traditional pilot-aided estimation, semiblind estimatio... In this paper, a quasi-Newton method fbr semi-blind estimation is derived for channel estimation in uplink cloud radio access networks (C-RANs). Different from traditional pilot-aided estimation, semiblind estimation utilizes the unknown data symbols in addition to the known pilot symbols to estimate the channel. An initial channel state information (CSI) obtained by least-squared (LS) estimation is needed in semi-blind estimation. BFGS (Brayben, Fletcher, Goldfarb and Shanno) algorithm, which employs data as well as pilot symbols, estimates the CSI though solving the problem provided by maximum-likelihood (ML) principle. In addition, mean-square-error (MSE) used to evaluate the estimation performance can be further minimized with an optimal pilot design. Simulation results show that the semi-blind estimation achieves a significant improvement in terms of MSE performance over the conventional LS estimation by utilizing data symbols instead of increasing the number of pilot symbols, which demonstrates the estimation accuracy and spectral efficiency are both improved by semiblind estimation for C-RANs. 展开更多
关键词 cloud radio access networks semi-blind channel estimation
下载PDF
基于InfoLSGAN和AC算法的滚动轴承剩余寿命预测 被引量:5
6
作者 于广滨 卓识 +1 位作者 于军 刘可 《航空动力学报》 EI CAS CSCD 北大核心 2020年第6期1212-1221,共10页
为解决小样本和噪声干扰下滚动轴承剩余寿命(RUL)预测准确率低的问题,提出一种基于信息最小二乘生成对抗网络(information least squares generative adversarial network,InfoLSGAN)和行动者-评论家(actor-critic,AC)算法的滚动轴承剩... 为解决小样本和噪声干扰下滚动轴承剩余寿命(RUL)预测准确率低的问题,提出一种基于信息最小二乘生成对抗网络(information least squares generative adversarial network,InfoLSGAN)和行动者-评论家(actor-critic,AC)算法的滚动轴承剩余寿命预测方法。将堆叠降噪自动编码器、信息生成对抗网络和最小二乘生成对抗网络相结合,构建InfoLSGAN,自动地从噪声数据中提取可解释的鲁棒特征,解决梯度消失问题;采用基于AC的训练算法训练InfoLSGAN,减少训练时间,加快收敛速度;根据训练后的InfoLSGAN,利用softmax分类器预测测试样本中滚动轴承的剩余寿命。通过滚动轴承加速疲劳寿命试验验证该方法的有效性。试验结果证明,当信噪比等于0时,该方法对滚动轴承测试样本的寿命预测准确率至少提高了10%。在小样本情况下,滚动轴承剩余寿命预测的平均准确率达95.84%。 展开更多
关键词 滚动轴承 剩余寿命预测 信息最小二乘 生成对抗网络 行动者-评论家算法 堆叠降噪自动编码器
原文传递
基于无人机多光谱遥感的冬小麦叶面积指数反演 被引量:25
7
作者 孙诗睿 赵艳玲 +2 位作者 王亚娟 王鑫 张硕 《中国农业大学学报》 CAS CSCD 北大核心 2019年第11期51-58,共8页
以获取的冬小麦无人机多光谱影像为数据源,充分利用多光谱传感器的红边通道对传统植被指数进行改进,通过灰色关联度分析后基于多个植被指数建模的方法对冬小麦的叶面积指数(leaf area index,LAI)进行反演精度对比。结果显示:使用基于多... 以获取的冬小麦无人机多光谱影像为数据源,充分利用多光谱传感器的红边通道对传统植被指数进行改进,通过灰色关联度分析后基于多个植被指数建模的方法对冬小麦的叶面积指数(leaf area index,LAI)进行反演精度对比。结果显示:使用基于多植被指数的随机森林(RF)比赤池信息量准则-偏最小二乘法(AIC-PLS)反演精度高。得到的LAI反演值和真实值之间的R^2=0.822,RMSE=1.218。研究证明通过随机森林预测具有更好的拟合效果,对冬小麦的LAI反演有较好的适用性。 展开更多
关键词 无人机 多光谱遥感 叶面积指数 反演 赤池信息量准则-偏最小二乘 随机森林法
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部