期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
高职“双师型”教师职业能力内涵要素调研与问题分析 被引量:3
1
作者 王亚盛 《职业教育研究》 2014年第8期49-52,共4页
针对高职院校"双师型"教师定义与其职业能力内涵要素的不统一性问题,开展了对国家示范性、骨干高职院校的教师、学生和校企合作企业员工的问卷调查工作。通过对职业能力要素指标的调查分析,采用主观/客观综合赋权方法确定了... 针对高职院校"双师型"教师定义与其职业能力内涵要素的不统一性问题,开展了对国家示范性、骨干高职院校的教师、学生和校企合作企业员工的问卷调查工作。通过对职业能力要素指标的调查分析,采用主观/客观综合赋权方法确定了教师职业能力10个一级要素、31个二级要素和95个三级要素的权重值,据此制定了高职教师职业能力标准评价体系相关执行性文件,并针对调查发现的重要问题进行了分析。 展开更多
关键词 “双师型”教师 职业能力内涵要素 主观 客观赋 信息熵值权 综合分析
下载PDF
An Intelligent Early Warning Method of Press-Assembly Quality Based on Outlier Data Detection and Linear Regression
2
作者 XUE Shanliang LI Chen 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第4期597-606,共10页
Focusing on controlling the press-assembly quality of high-precision servo mechanism,an intelligent early warning method based on outlier data detection and linear regression is proposed.Linear regression is used to d... Focusing on controlling the press-assembly quality of high-precision servo mechanism,an intelligent early warning method based on outlier data detection and linear regression is proposed.Linear regression is used to deal with the relationship between assembly quality and press-assembly process,then the mathematical model of displacement-force in press-assembly process is established and a qualified press-assembly force range is defined for assembly quality control.To preprocess the raw dataset of displacement-force in the press-assembly process,an improved local outlier factor based on area density and P weight(LAOPW)is designed to eliminate the outliers which will result in inaccuracy of the mathematical model.A weighted distance based on information entropy is used to measure distance,and the reachable distance is replaced with P weight.Experiments show that the detection efficiency of the algorithm is improved by 5.6 ms compared with the traditional local outlier factor(LOF)algorithm,and the detection accuracy is improved by about 2%compared with the local outlier factor based on area density(LAOF)algorithm.The application of LAOPW algorithm and the linear regression model shows that it can effectively carry out intelligent early warning of press-assembly quality of high precision servo mechanism. 展开更多
关键词 quality early warning outlier data detection linear regression local outlier factor based on area density and P weight(LAOPW) information entropy P weight
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部