A mutual information-based non-rigid medical image registration algorithm is presented. An approximate function of Hanning windowed sinc is used as kernel function of partial volume (PV) interpolation to estimate the ...A mutual information-based non-rigid medical image registration algorithm is presented. An approximate function of Hanning windowed sinc is used as kernel function of partial volume (PV) interpolation to estimate the joint histogram, which is the key to calculating the mutual information. And a new method is proposed to compute the gradient of mutual information with respect to the model parameters. The transformation of object is modeled by a free-form deformation (FFD) based on B-splines. The experiments on 3D synthetic and real image data show that the algorithm can converge at the global optimum and restrain the emergency of local extreme.展开更多
In this paper, a new approach of muhi-modality image registration is represented with not only image intensity, but also features describing image structure. There are two novelties in the proposed method. Firstly, in...In this paper, a new approach of muhi-modality image registration is represented with not only image intensity, but also features describing image structure. There are two novelties in the proposed method. Firstly, instead of standard mutual information ( MI ) based on joint intensity histogram, regional mutual information ( RMI ) is employed, which allows neighborhood information to be taken into account. Secondly, a new feature images obtained by means of phase congruency are invariants to brightness or contrast changes. By incorporating these features and intensity into RMI, we can combine the aspects of both structural and neighborhood information together, which offers a more robust and a high level of registration accuracy.展开更多
基金Supported bythe National Basic Research Programof China ("973"Program) (No2003CB716103)Key Project of Shanghai Scienceand Technology Committee(No05DZ19509)
文摘A mutual information-based non-rigid medical image registration algorithm is presented. An approximate function of Hanning windowed sinc is used as kernel function of partial volume (PV) interpolation to estimate the joint histogram, which is the key to calculating the mutual information. And a new method is proposed to compute the gradient of mutual information with respect to the model parameters. The transformation of object is modeled by a free-form deformation (FFD) based on B-splines. The experiments on 3D synthetic and real image data show that the algorithm can converge at the global optimum and restrain the emergency of local extreme.
文摘In this paper, a new approach of muhi-modality image registration is represented with not only image intensity, but also features describing image structure. There are two novelties in the proposed method. Firstly, instead of standard mutual information ( MI ) based on joint intensity histogram, regional mutual information ( RMI ) is employed, which allows neighborhood information to be taken into account. Secondly, a new feature images obtained by means of phase congruency are invariants to brightness or contrast changes. By incorporating these features and intensity into RMI, we can combine the aspects of both structural and neighborhood information together, which offers a more robust and a high level of registration accuracy.