Information-Centric Networking(ICN) has recently emerged as a result of the increased demand to access contents regardless of their location in the network services. This new approach facilitates content distribution ...Information-Centric Networking(ICN) has recently emerged as a result of the increased demand to access contents regardless of their location in the network services. This new approach facilitates content distribution as a service of the network with lower delay and higher security in comparison with the current IP network. Applying ICN in current IP infrastructure leads to major complexities. One approach to deploy ICN with less complexity is to integrate ICN with Software Defined Networking(SDN). The SDN controller manages the content distribution, caching, and routing based on the users' requests. In this paper, we extend these context by addressing the ICN topology management problem over the SDN network to achieve an improved user experience as well as network performance. In particular, a centralized controller is designed to construct and manage the ICN overlay. Experimental results indicate that this adopted topology management strategy achieves high performance, in terms of low failure in interest satisfaction and reduced download time compared to a plain ICN.展开更多
This paper integrates genetic algorithm and neura l network techniques to build new temporal predicting analysis tools for geographic information system (GIS). These new GIS tools can be readily applied in a practical...This paper integrates genetic algorithm and neura l network techniques to build new temporal predicting analysis tools for geographic information system (GIS). These new GIS tools can be readily applied in a practical and appropriate manner in spatial and temp oral research to patch the gaps in GIS data mining and knowledge discovery functions. The specific achievement here is the integration of related artificial intellig ent technologies into GIS software to establish a conceptual spatial and temporal analysis framework. And, by using this framework to develop an artificial intelligent spatial and tempor al information analyst (ASIA) system which then is fully utilized in the existin g GIS package. This study of air pollutants forecasting provides a geographical practical case to prove the rationalization and justness of the conceptual tempo ral analysis framework.展开更多
Opportunistic networks are random networks and do not communicate with each other among respective communication areas.This situation leads to great difficulty in message transfer.This paper proposes a reducing energy...Opportunistic networks are random networks and do not communicate with each other among respective communication areas.This situation leads to great difficulty in message transfer.This paper proposes a reducing energy consumption optimal selection of path transmission(OSPT) routing algorithm in opportunistic networks.This algorithm designs a dynamic random network topology,creates a dynamic link,and realizes an optimized selected path.This algorithm solves a problem that nodes are unable to deliver messages for a long time in opportunistic networks.According to the simulation experiment,OSPT improves deliver ratio,and reduces energy consumption,cache time and transmission delay compared with the Epidemic Algorithm and Spray and Wait Algorithm in opportunistic networks.展开更多
Under China's innovation-driven development strategy, venture capital has become an important driving force in urban agglomeration integration and collaborative innovation. This paper uses social network analysis ...Under China's innovation-driven development strategy, venture capital has become an important driving force in urban agglomeration integration and collaborative innovation. This paper uses social network analysis to analyze spatiotemporal differences of venture capital in the Beijing-Tianjin-Hebei urban agglomeration for the period 2005–2015. A gravity model and panel data regression model are used to reveal the influencing factors on spatiotemporal differences in venture capital in the region. This study finds that there is a certain cyclical fluctuation and uneven differentiation in the venture capital network in the Beijing-Tianjin-Hebei urban agglomeration in terms of total investment, and that the three centers of venture capital(Beijing, Shijiazhuang and Tangshan) have a stimulatory effect on surrounding cities; flows of venture capital between cities display certain networking rules, but they are slow to develop and strongly centripetal; there is a strong positive correlation between levels of information infrastructure development and economic development and venture capital investment; and places with relatively underdeveloped financial environments and service industries are less able to apply the fruits of innovation and entrepreneurship and to attract funds. This study can act as a reference for the Beijing-Tianjin-Hebei urban agglomeration in building a world-class super urban agglomeration with the best innovation capabilities in China.展开更多
Stanley Milgram's small world experiment presents "six degrees of separation" of our world.One phenomenon of the experiment still puzzling us is that how individuals operating with the social network inf...Stanley Milgram's small world experiment presents "six degrees of separation" of our world.One phenomenon of the experiment still puzzling us is that how individuals operating with the social network information with their characteristics can be very adept at finding the short chains. The previous works on this issue focus whether on the methods of navigation in a given network structure,or on the effects of additional information to the searching process. In this paper, the authors emphasize that the growth and shape of network architecture is tightly related to the individuals' attributes. The authors introduce a method to reconstruct nodes' intimacy degree based on local interaction. Then we provide an intimacy based approach for orientation in networks. The authors find that the basic reason of efficient search in social networks is that the degree of "intimacy" of each pair of nodes decays with the length of their shortest path exponentially. Meanwhile, the model can explain the hubs limitation which was observed in real-world experiment.展开更多
Information sharing is a critical task for group-living animals. The pattern of sharing can be modeled as a network whose structure can affect the decision-making performance of individual members as well as that of t...Information sharing is a critical task for group-living animals. The pattern of sharing can be modeled as a network whose structure can affect the decision-making performance of individual members as well as that of the group as a whole. A fully connected network, in which each member can directly transfer information to all other members, ensures rapid sharing of important information, such as a promising foraging location. However, it can also impose costs by amplifying the spread of inaccur- ate information (if, for example the foraging location is actually not profitable). Thus, an optimal net- work structure should balance effective sharing of current knowledge with opportunities to discover new information. We used a computer simulation to measure how well groups characterized by dif- ferent network structures (fully connected, small world, lattice, and random) find and exploit resource peaks in a variable environment. We found that a fully connected network outperformed other struc- tures when resource quality was predictable. When resource quality showed random variation, however, the small world network was better than the fully connected one at avoiding extremely poor outcomes. These results suggest that animal groups may benefit by adjusting their informa- tion-sharing network structures depending on the noisiness of their environment.展开更多
文摘Information-Centric Networking(ICN) has recently emerged as a result of the increased demand to access contents regardless of their location in the network services. This new approach facilitates content distribution as a service of the network with lower delay and higher security in comparison with the current IP network. Applying ICN in current IP infrastructure leads to major complexities. One approach to deploy ICN with less complexity is to integrate ICN with Software Defined Networking(SDN). The SDN controller manages the content distribution, caching, and routing based on the users' requests. In this paper, we extend these context by addressing the ICN topology management problem over the SDN network to achieve an improved user experience as well as network performance. In particular, a centralized controller is designed to construct and manage the ICN overlay. Experimental results indicate that this adopted topology management strategy achieves high performance, in terms of low failure in interest satisfaction and reduced download time compared to a plain ICN.
文摘This paper integrates genetic algorithm and neura l network techniques to build new temporal predicting analysis tools for geographic information system (GIS). These new GIS tools can be readily applied in a practical and appropriate manner in spatial and temp oral research to patch the gaps in GIS data mining and knowledge discovery functions. The specific achievement here is the integration of related artificial intellig ent technologies into GIS software to establish a conceptual spatial and temporal analysis framework. And, by using this framework to develop an artificial intelligent spatial and tempor al information analyst (ASIA) system which then is fully utilized in the existin g GIS package. This study of air pollutants forecasting provides a geographical practical case to prove the rationalization and justness of the conceptual tempo ral analysis framework.
基金Supported by the National Natural Science Foundation of China(No.61379057,61073186,61309001,61379110,61103202)Doctoral Fund of Ministry of Education of China(No.20120162130008)the National Basic Research Program of China(973 Program)(No.2014CB046305)
文摘Opportunistic networks are random networks and do not communicate with each other among respective communication areas.This situation leads to great difficulty in message transfer.This paper proposes a reducing energy consumption optimal selection of path transmission(OSPT) routing algorithm in opportunistic networks.This algorithm designs a dynamic random network topology,creates a dynamic link,and realizes an optimized selected path.This algorithm solves a problem that nodes are unable to deliver messages for a long time in opportunistic networks.According to the simulation experiment,OSPT improves deliver ratio,and reduces energy consumption,cache time and transmission delay compared with the Epidemic Algorithm and Spray and Wait Algorithm in opportunistic networks.
基金Major Program of the National Natural Science Foundation of China,No.41590842
文摘Under China's innovation-driven development strategy, venture capital has become an important driving force in urban agglomeration integration and collaborative innovation. This paper uses social network analysis to analyze spatiotemporal differences of venture capital in the Beijing-Tianjin-Hebei urban agglomeration for the period 2005–2015. A gravity model and panel data regression model are used to reveal the influencing factors on spatiotemporal differences in venture capital in the region. This study finds that there is a certain cyclical fluctuation and uneven differentiation in the venture capital network in the Beijing-Tianjin-Hebei urban agglomeration in terms of total investment, and that the three centers of venture capital(Beijing, Shijiazhuang and Tangshan) have a stimulatory effect on surrounding cities; flows of venture capital between cities display certain networking rules, but they are slow to develop and strongly centripetal; there is a strong positive correlation between levels of information infrastructure development and economic development and venture capital investment; and places with relatively underdeveloped financial environments and service industries are less able to apply the fruits of innovation and entrepreneurship and to attract funds. This study can act as a reference for the Beijing-Tianjin-Hebei urban agglomeration in building a world-class super urban agglomeration with the best innovation capabilities in China.
基金supported by the National Natural Science Foundation of China under Grant Nos.61203156,61374175,and 61573065
文摘Stanley Milgram's small world experiment presents "six degrees of separation" of our world.One phenomenon of the experiment still puzzling us is that how individuals operating with the social network information with their characteristics can be very adept at finding the short chains. The previous works on this issue focus whether on the methods of navigation in a given network structure,or on the effects of additional information to the searching process. In this paper, the authors emphasize that the growth and shape of network architecture is tightly related to the individuals' attributes. The authors introduce a method to reconstruct nodes' intimacy degree based on local interaction. Then we provide an intimacy based approach for orientation in networks. The authors find that the basic reason of efficient search in social networks is that the degree of "intimacy" of each pair of nodes decays with the length of their shortest path exponentially. Meanwhile, the model can explain the hubs limitation which was observed in real-world experiment.
文摘Information sharing is a critical task for group-living animals. The pattern of sharing can be modeled as a network whose structure can affect the decision-making performance of individual members as well as that of the group as a whole. A fully connected network, in which each member can directly transfer information to all other members, ensures rapid sharing of important information, such as a promising foraging location. However, it can also impose costs by amplifying the spread of inaccur- ate information (if, for example the foraging location is actually not profitable). Thus, an optimal net- work structure should balance effective sharing of current knowledge with opportunities to discover new information. We used a computer simulation to measure how well groups characterized by dif- ferent network structures (fully connected, small world, lattice, and random) find and exploit resource peaks in a variable environment. We found that a fully connected network outperformed other struc- tures when resource quality was predictable. When resource quality showed random variation, however, the small world network was better than the fully connected one at avoiding extremely poor outcomes. These results suggest that animal groups may benefit by adjusting their informa- tion-sharing network structures depending on the noisiness of their environment.