To investigate drivers' lane-changing behavior under different information feedback strategies,a microscopic traffic simulation based on the cellular automaton model was made on the typical freeway with a regular ...To investigate drivers' lane-changing behavior under different information feedback strategies,a microscopic traffic simulation based on the cellular automaton model was made on the typical freeway with a regular lane and a high-occupancy one. A new dynamic tolling scheme in terms of the real-time traffic condition on the high-occupancy lane was further designed to enhance the whole freeway's flow throughput. The results show that the mean velocity feedback strategy is generally more efficient than the travel time feedback strategy in correctly guiding drivers' lane choice behavior. Specifically,the toll level,lane-changing rate and freeway's throughput and congestion coefficient induced by the travel time feedback strategy oscillate with larger amplitude and longer period. In addition,the dynamic tolling scheme can make the high-occupancy lane less congested and maximize the freeway's throughput when the regular-lane inflow rate is larger than 0.45.展开更多
A large semantic gap exists between content based index retrieval(CBIR) and high-level semantic,additional semantic information should be attached to the images,it refers in three respects including semantic represent...A large semantic gap exists between content based index retrieval(CBIR) and high-level semantic,additional semantic information should be attached to the images,it refers in three respects including semantic representation model,semantic information building and semantic retrieval techniques.In this paper,we introduce an associated semantic network and an automatic semantic annotation system.In the system,a semantic network model is employed as the semantic representation model,it uses semantic Key words,linguistic ontology and low-level features in semantic similarity calculating.Through several times of users' relevance feedback,semantic network is enriched automatically.To speed up the growth of semantic network and get a balance annotation,semantic seeds and semantic loners are employed especially.展开更多
The signals and the neuronal mechanisms that underlying the behavior, actions, and action-directed goals in man and animals during conscious state are not fully understood, and the neuro-dynamic mechanisms and the sou...The signals and the neuronal mechanisms that underlying the behavior, actions, and action-directed goals in man and animals during conscious state are not fully understood, and the neuro-dynamic mechanisms and the source of these neuronal signals are not authenticated. Temporal judgment alone can neither account for neural signaling necessary for emergence of conscious act nor explain RP (Readiness Potential, the accepted neural correlate time needed for the neurons to fire) that precedes the onset of action or the latency time of 0.5 ms that precedes the conscious act found by Libet. Neuronal feedback mechanisms between the heart and the brain seem feasible and logical suggestions to be considered, so clearly, I would suggest that the onset of a conscious-directed goal, conscious action, freewill, intension, and the neural signals and mechanisms that control them may depend upon the interaction between two sources: (1) the brain and (2) the heart. The temporal-cardiac (neural system) interaction has been well established in heart-brain interaction studies by many workers who found that the work of the heart precedes that of the brain in EEG (electroencephalography) findings in conscious stimulation, which may explain and account for RP time and the 0.5 ms latency period of Libet's important findings. According to my hypothesis (AlFaki 2009) and views, the temporal neurons in the soma to-sensory cortex will respond to conscious stimulation only after receiving neuronal signals from the cardiac neurons in the neural plexus of the heart; after variable millisecond equivalent to RP or Libet's latency period prior to temporal neuronal firinging in response to conscious act, this time is the time needed by cardiac neurons to process and signal information to the brain through feedback mechanism and heart-brain interaction.展开更多
基金Project(70521001) supported by the National Natural Science Foundation of ChinaProject(2006CB705503) supported by the National Basic Research Program of ChinaProject supported by the Innovation Foundation of BUAA for PhD Graduates
文摘To investigate drivers' lane-changing behavior under different information feedback strategies,a microscopic traffic simulation based on the cellular automaton model was made on the typical freeway with a regular lane and a high-occupancy one. A new dynamic tolling scheme in terms of the real-time traffic condition on the high-occupancy lane was further designed to enhance the whole freeway's flow throughput. The results show that the mean velocity feedback strategy is generally more efficient than the travel time feedback strategy in correctly guiding drivers' lane choice behavior. Specifically,the toll level,lane-changing rate and freeway's throughput and congestion coefficient induced by the travel time feedback strategy oscillate with larger amplitude and longer period. In addition,the dynamic tolling scheme can make the high-occupancy lane less congested and maximize the freeway's throughput when the regular-lane inflow rate is larger than 0.45.
文摘A large semantic gap exists between content based index retrieval(CBIR) and high-level semantic,additional semantic information should be attached to the images,it refers in three respects including semantic representation model,semantic information building and semantic retrieval techniques.In this paper,we introduce an associated semantic network and an automatic semantic annotation system.In the system,a semantic network model is employed as the semantic representation model,it uses semantic Key words,linguistic ontology and low-level features in semantic similarity calculating.Through several times of users' relevance feedback,semantic network is enriched automatically.To speed up the growth of semantic network and get a balance annotation,semantic seeds and semantic loners are employed especially.
文摘The signals and the neuronal mechanisms that underlying the behavior, actions, and action-directed goals in man and animals during conscious state are not fully understood, and the neuro-dynamic mechanisms and the source of these neuronal signals are not authenticated. Temporal judgment alone can neither account for neural signaling necessary for emergence of conscious act nor explain RP (Readiness Potential, the accepted neural correlate time needed for the neurons to fire) that precedes the onset of action or the latency time of 0.5 ms that precedes the conscious act found by Libet. Neuronal feedback mechanisms between the heart and the brain seem feasible and logical suggestions to be considered, so clearly, I would suggest that the onset of a conscious-directed goal, conscious action, freewill, intension, and the neural signals and mechanisms that control them may depend upon the interaction between two sources: (1) the brain and (2) the heart. The temporal-cardiac (neural system) interaction has been well established in heart-brain interaction studies by many workers who found that the work of the heart precedes that of the brain in EEG (electroencephalography) findings in conscious stimulation, which may explain and account for RP time and the 0.5 ms latency period of Libet's important findings. According to my hypothesis (AlFaki 2009) and views, the temporal neurons in the soma to-sensory cortex will respond to conscious stimulation only after receiving neuronal signals from the cardiac neurons in the neural plexus of the heart; after variable millisecond equivalent to RP or Libet's latency period prior to temporal neuronal firinging in response to conscious act, this time is the time needed by cardiac neurons to process and signal information to the brain through feedback mechanism and heart-brain interaction.