Optimal clustering for the web documents is known to complicated cornbinatorial Optimization problem and it is hard to develop a generally applicable oplimal algorithm. An accelerated simuIated arlneaIing aIgorithm is...Optimal clustering for the web documents is known to complicated cornbinatorial Optimization problem and it is hard to develop a generally applicable oplimal algorithm. An accelerated simuIated arlneaIing aIgorithm is developed for automatic web document classification. The web document classification problem is addressed as the problem of best describing a match between a web query and a hypothesized web object. The normalized term frequency and inverse document frequency coefficient is used as a measure of the match. Test beds are generated on - line during the search by transforming model web sites. As a result, web sites can be clustered optimally in terms of keyword vectofs of corresponding web documents.展开更多
文摘Optimal clustering for the web documents is known to complicated cornbinatorial Optimization problem and it is hard to develop a generally applicable oplimal algorithm. An accelerated simuIated arlneaIing aIgorithm is developed for automatic web document classification. The web document classification problem is addressed as the problem of best describing a match between a web query and a hypothesized web object. The normalized term frequency and inverse document frequency coefficient is used as a measure of the match. Test beds are generated on - line during the search by transforming model web sites. As a result, web sites can be clustered optimally in terms of keyword vectofs of corresponding web documents.