[Objective] This study aimed to improve the accuracy of remote sensing classification for Dongting Lake Wetland.[Method] Based on the TM data and ground GIS information of Donting Lake,the decision tree classification...[Objective] This study aimed to improve the accuracy of remote sensing classification for Dongting Lake Wetland.[Method] Based on the TM data and ground GIS information of Donting Lake,the decision tree classification method was established through the expert classification knowledge base.The images of Dongting Lake wetland were classified into water area,mudflat,protection forest beach,Carem spp beach,Phragmites beach,Carex beach and other water body according to decision tree layers.[Result] The accuracy of decision tree classification reached 80.29%,which was much higher than the traditional method,and the total Kappa coefficient was 0.883 9,indicating that the data accuracy of this method could fulfill the requirements of actual practice.In addition,the image classification results based on knowledge could solve some classification mistakes.[Conclusion] Compared with the traditional method,the decision tree classification based on rules could classify the images by using various conditions,which reduced the data processing time and improved the classification accuracy.展开更多
文摘[Objective] This study aimed to improve the accuracy of remote sensing classification for Dongting Lake Wetland.[Method] Based on the TM data and ground GIS information of Donting Lake,the decision tree classification method was established through the expert classification knowledge base.The images of Dongting Lake wetland were classified into water area,mudflat,protection forest beach,Carem spp beach,Phragmites beach,Carex beach and other water body according to decision tree layers.[Result] The accuracy of decision tree classification reached 80.29%,which was much higher than the traditional method,and the total Kappa coefficient was 0.883 9,indicating that the data accuracy of this method could fulfill the requirements of actual practice.In addition,the image classification results based on knowledge could solve some classification mistakes.[Conclusion] Compared with the traditional method,the decision tree classification based on rules could classify the images by using various conditions,which reduced the data processing time and improved the classification accuracy.