预约式方法是解决非信控交叉路口多车协同控制问题的经典方法。传统预约式方法通常假设路口中仅存在智能网联车辆(intelligent and connected vehicle,ICV),缺少对人类驾驶车辆(human-driven vehicle,HDV)和ICV并存情况的讨论。本文基...预约式方法是解决非信控交叉路口多车协同控制问题的经典方法。传统预约式方法通常假设路口中仅存在智能网联车辆(intelligent and connected vehicle,ICV),缺少对人类驾驶车辆(human-driven vehicle,HDV)和ICV并存情况的讨论。本文基于预约式方法,针对ICV与HDV混行的非信控交叉路口协同控制方法展开研究,并探究ICV渗透率变化对非信控交叉路口通行效率的影响。首先,对混合交通流下非信控交叉路口进行功能区域划分,并提出混合预约多车协同控制架构;其次,基于预约式方法制定考虑HDV驾驶行为特性的混合预约多车协同控制策略,包括ICV单元格预约策略和ICV速度控制策略;最后,基于SUMO/Python搭建非信控交叉路口混合交通联合仿真平台,以路口通过率和路段平均速度为评价指标,在ICV渗透率分别为100%、90%、60%和30%的情况下进行不同交通流量下的仿真验证。结果表明,所提出的控制策略能保证所有车辆安全通过交叉路口,且非信控路口通行效率随ICV渗透率的提高而提高。展开更多
Vehicle delay is an important measure to evaluate the signal timings of signalized intersections.When optimization the signal control parameters, delays of vehicles from all approach directions of an intersection shou...Vehicle delay is an important measure to evaluate the signal timings of signalized intersections.When optimization the signal control parameters, delays of vehicles from all approach directions of an intersection should be considered. Based on the analysis of the vehicle delay on an approach of intersection, directed against the typical condition of a congested intersection-over-saturated condition, the paper has analyzed and inferred the intersection delay dynamic formulation, and has established the relation between intersection delay,the signal timings, vehicle arrival rate and the queue lengths, and that provides useful information for understanding vehicle delay of signalized intersection and for establishing performance index function of signal timing optimization.展开更多
Endogenous electric fields (EFs) have been detected at wounds and damaged tissues. The potential roles of EFs in tissue repair and regeneration have been an intriguing topic for centuries. Recent researches have pro...Endogenous electric fields (EFs) have been detected at wounds and damaged tissues. The potential roles of EFs in tissue repair and regeneration have been an intriguing topic for centuries. Recent researches have provided significant insights into how naturally occurring EFs may participate in the control of tissue repair and regeneration. Applied EFs equivalent to the size of fields measured in vivo direct cell migration, cell proliferation and nerve sprouting at wounds. More remarkably, physiological EFs are a guidance cue that directs cell migration which overrides other well accepted directional signals including initial injury stimulation, wound void, contact inhibition release, population pressure and chemotaxis. EFs activate many intracellular signaling pathways in a directional manner. Modulation of endogenous wound EFs affects epithelial cell migration, cell proliferation, and nerve growth at cornea wounds in vivo. Electric stimulation is being tested clinically for the treatments of bone fracture, wound healing and spinal cord injury. EFs thus may represent a novel type of signaling paradigm in tissue repair and regeneration. Combination of the electric stimulation and other well understood biochemical regulatory mechanisms may offer powerful and effective therapies for tissue repair and regeneration. This review introduces experimental evidence for the existence of endogenous EFs and discusses their roles in tissue repair and regeneration.展开更多
文摘预约式方法是解决非信控交叉路口多车协同控制问题的经典方法。传统预约式方法通常假设路口中仅存在智能网联车辆(intelligent and connected vehicle,ICV),缺少对人类驾驶车辆(human-driven vehicle,HDV)和ICV并存情况的讨论。本文基于预约式方法,针对ICV与HDV混行的非信控交叉路口协同控制方法展开研究,并探究ICV渗透率变化对非信控交叉路口通行效率的影响。首先,对混合交通流下非信控交叉路口进行功能区域划分,并提出混合预约多车协同控制架构;其次,基于预约式方法制定考虑HDV驾驶行为特性的混合预约多车协同控制策略,包括ICV单元格预约策略和ICV速度控制策略;最后,基于SUMO/Python搭建非信控交叉路口混合交通联合仿真平台,以路口通过率和路段平均速度为评价指标,在ICV渗透率分别为100%、90%、60%和30%的情况下进行不同交通流量下的仿真验证。结果表明,所提出的控制策略能保证所有车辆安全通过交叉路口,且非信控路口通行效率随ICV渗透率的提高而提高。
基金Sponsored by the Mulfidiscipline Scientific Research Foundation of Harbin Institute of Technology( Grant No. HIT. MD. 2002.28)
文摘Vehicle delay is an important measure to evaluate the signal timings of signalized intersections.When optimization the signal control parameters, delays of vehicles from all approach directions of an intersection should be considered. Based on the analysis of the vehicle delay on an approach of intersection, directed against the typical condition of a congested intersection-over-saturated condition, the paper has analyzed and inferred the intersection delay dynamic formulation, and has established the relation between intersection delay,the signal timings, vehicle arrival rate and the queue lengths, and that provides useful information for understanding vehicle delay of signalized intersection and for establishing performance index function of signal timing optimization.
基金This research was supported by the National Natural Science Foundation of China (No. 30871269).Acknowledgement We are very grateful to Mr. Vu Tran (Dermatology, University of California Davis, USA) for his critical reading of this manuscript.
文摘Endogenous electric fields (EFs) have been detected at wounds and damaged tissues. The potential roles of EFs in tissue repair and regeneration have been an intriguing topic for centuries. Recent researches have provided significant insights into how naturally occurring EFs may participate in the control of tissue repair and regeneration. Applied EFs equivalent to the size of fields measured in vivo direct cell migration, cell proliferation and nerve sprouting at wounds. More remarkably, physiological EFs are a guidance cue that directs cell migration which overrides other well accepted directional signals including initial injury stimulation, wound void, contact inhibition release, population pressure and chemotaxis. EFs activate many intracellular signaling pathways in a directional manner. Modulation of endogenous wound EFs affects epithelial cell migration, cell proliferation, and nerve growth at cornea wounds in vivo. Electric stimulation is being tested clinically for the treatments of bone fracture, wound healing and spinal cord injury. EFs thus may represent a novel type of signaling paradigm in tissue repair and regeneration. Combination of the electric stimulation and other well understood biochemical regulatory mechanisms may offer powerful and effective therapies for tissue repair and regeneration. This review introduces experimental evidence for the existence of endogenous EFs and discusses their roles in tissue repair and regeneration.