Wireless technology is applied increasingly in networked control systems. A new form of wireless network called wireless sensor network can bring control systems some advantages, such as flexibility and feasibility of...Wireless technology is applied increasingly in networked control systems. A new form of wireless network called wireless sensor network can bring control systems some advantages, such as flexibility and feasibility of network deployment at low costs, while it also raises some new challenges. First, the communication resources shared by all the control loops are limited. Second, the wireless and multi-hop character of sensor network makes the resources scheduling more difficult. Thus, how to effectively allocate the limited communication resources for those control loops is an important problem. In this paper, this problem is formulated as an optimal sampling frequency assignment problem, where the objective function is to maximize the utility of control systems, subject to channel capacity constraints. Then an iterative distributed algorithm based on local buffer information is proposed. Finally, the simulation results show that the proposed algorithm can effectively allocate the limited communication resource in a distributed way. It can achieve the optimal quality of the control system and adapt to the network load changes.展开更多
The paper analyze and design and implement a remote control system based on network. A computer network remote control system mainly includes server, client and the control information. Server registration information...The paper analyze and design and implement a remote control system based on network. A computer network remote control system mainly includes server, client and the control information. Server registration information realize the user command; client provides network hardware, software and other system resources, the system response message and then feedback service instruction; control information transmission layer implementation using TCPflP protocol to control information including control of resources and control commands etc.. This paper adopts centralized network control system model, the structure of the network system realize unified observation, control, coordination, and control of high efficiency. The use of key technologies, such as Socket and COM to realize the goal of computer hardware resource control, software resource management and other functions.展开更多
Device-to-Device(D2D) communication has been proposed as a promising implementation of green communication to benefit the existed cellular network.In order to limit cross-tier interference while explore the gain of sh...Device-to-Device(D2D) communication has been proposed as a promising implementation of green communication to benefit the existed cellular network.In order to limit cross-tier interference while explore the gain of short-range communication,we devise a series of distributed power control(DPC) schemes for energy conservation(EC)and enhancement of radio resource utilization in the hybrid system.Firstly,a constrained opportunistic power control model is built up to take advantage of the interference avoidance methodology in the presence of service requirement and power constraint.Then,biasing scheme and admission control are added to evade ineffective power consumption and maintain the feasibility of the system.Upon feasibility,a non-cooperative game is further formulated to exploit the profit in EC with minor influence on spectral efficiency(SE).The convergence of the DPC schemes is validated and their performance is confirmed via simulation results.展开更多
This paper presents a transition-mode zero-voltage-switching inverter for the cooker magnetron of household microwave ovens. The inverter drives a leakage transformer to generate the required high voltage and stabiliz...This paper presents a transition-mode zero-voltage-switching inverter for the cooker magnetron of household microwave ovens. The inverter drives a leakage transformer to generate the required high voltage and stabilized current. For achieving zero-voltage switching, a transition-mode driver L6561 is utilized to detect the ending of transformer resonance and drive an insulated-gate-bipolar-transistor. As transistor is conducted, rectified direct-current voltage drives the transformer. While transistor is cut off, transformer resonates with a parallel capacitor. Transistor conduction time and magnetron power are controlled with a 16-bit digital signal controller dsPIC30F4011. For widening the working range, transistor conduction time is set to be inversely changed with line-frequency input voltage. To demonstrate the analysis and design of this paper, a 1 kW inverter circuit is built. Experimental results show the feasibility and usefulness of the designed magnetron power supply.展开更多
Digital controllers are an interesting option for the next voltage regulator module (VRM) generation due to their wide programming possibilities. This paper discloses a very interested candidate to control DC-DC pow...Digital controllers are an interesting option for the next voltage regulator module (VRM) generation due to their wide programming possibilities. This paper discloses a very interested candidate to control DC-DC power converters, the Digital Signal Controller (DSC). For that matter, a study was done by carrying out simulations and experimental results. Moreover, an additional voltage-input feed-forward (IVFF) algorithm is given in order to show the benefits of this technology. Finally, a complete analysis of the quantization effect is presented, and its influence over the controller performance is included.展开更多
The quantum teleportation with the entangled thermai state is investigated based on the completely anisotropie Heisenberg chain in the presence of the externally inhomogeneous magnetic field. The effects of the anisot...The quantum teleportation with the entangled thermai state is investigated based on the completely anisotropie Heisenberg chain in the presence of the externally inhomogeneous magnetic field. The effects of the anisotropy and magnetic field for the quantum fidelity are studied in detail The zero temperature limit and the features of the nonzero temperature for this nonclassical fdelity are obtained. We find that the quantum teleportation demands more stringent conditions than the therma/ entanglement of the resource by investigating the threshold temperature of the thermal concurrence and the criticai temperature of the maximai teleportation fidelity. The useful quantum teleportation should avoid the point of the phase transition of the system and the anisotropy of the chain and the external magnetic field can control the applicability of the resource in the quantum teleportation.展开更多
The endocannabinoid system (ECS) is a key cellular signalling system that has been implicated in the regulation of diverse cellular functions. Importantly, growing evidence suggests that the biological actions of th...The endocannabinoid system (ECS) is a key cellular signalling system that has been implicated in the regulation of diverse cellular functions. Importantly, growing evidence suggests that the biological actions of the ECS may, in part, be mediated through its ability to regulate the production and/or release of nitric oxide, a ubiquitous bioactive molecule, which functions as a versatile signalling intermediate. Herein, we review and discuss evidence pertaining to ECS-mediated regulation of nitric oxide production, as well as the involvement of reactive nitrogen species in regulating ECS-induced signal transduction by highlighting emerging work support- ing nitrergic modulation of ECS function. Importantly, the studies outlined reveal that interactions between the ECS and nitrergic sig- nalling systems can be both stimulatory and inhibitory in nature, depending on cellular context. Moreover, such crosstalk may act to maintain proper cell function, whereas abnormalities in either system can undermine cellular homoeostasis and contribute to vari- ous pathologies associated with their dysregulation. Consequently, future studies targeting these signalling systems may provide new insights into the potential role of the ECS-nitric oxide signalling axis in disease development and/or lead to the identification of novel therapeutic targets for the treatment of nitrosative stress-related neurological, cardiovascular, and metabolic disorders.展开更多
This paper is concerned with the mixed H_2/H_∞ control problem for a new class of stochastic systems with exogenous disturbance signal.The most distinguishing feature,compared with the existing literatures,is that th...This paper is concerned with the mixed H_2/H_∞ control problem for a new class of stochastic systems with exogenous disturbance signal.The most distinguishing feature,compared with the existing literatures,is that the systems are described by linear backward stochastic differential equations(BSDEs).The solution to this problem is obtained completely and explicitly by using an approach which is based primarily on the completion-of-squares technique.Two equivalent expressions for the H_2/H_∞ control are presented.Contrary to forward deterministic and stochastic cases,the solution to the backward stochastic H_2/H_∞ control is no longer feedback of the current state;rather,it is feedback of the entire history of the state.展开更多
基金Project (Nos. 60074011 and 60574049) supported by the National Natural Science Foundation of China
文摘Wireless technology is applied increasingly in networked control systems. A new form of wireless network called wireless sensor network can bring control systems some advantages, such as flexibility and feasibility of network deployment at low costs, while it also raises some new challenges. First, the communication resources shared by all the control loops are limited. Second, the wireless and multi-hop character of sensor network makes the resources scheduling more difficult. Thus, how to effectively allocate the limited communication resources for those control loops is an important problem. In this paper, this problem is formulated as an optimal sampling frequency assignment problem, where the objective function is to maximize the utility of control systems, subject to channel capacity constraints. Then an iterative distributed algorithm based on local buffer information is proposed. Finally, the simulation results show that the proposed algorithm can effectively allocate the limited communication resource in a distributed way. It can achieve the optimal quality of the control system and adapt to the network load changes.
文摘The paper analyze and design and implement a remote control system based on network. A computer network remote control system mainly includes server, client and the control information. Server registration information realize the user command; client provides network hardware, software and other system resources, the system response message and then feedback service instruction; control information transmission layer implementation using TCPflP protocol to control information including control of resources and control commands etc.. This paper adopts centralized network control system model, the structure of the network system realize unified observation, control, coordination, and control of high efficiency. The use of key technologies, such as Socket and COM to realize the goal of computer hardware resource control, software resource management and other functions.
基金This work has been partly supported by National Natural Science Foundation of China,National High Technology Research and Development Program of China (863 Program)
文摘Device-to-Device(D2D) communication has been proposed as a promising implementation of green communication to benefit the existed cellular network.In order to limit cross-tier interference while explore the gain of short-range communication,we devise a series of distributed power control(DPC) schemes for energy conservation(EC)and enhancement of radio resource utilization in the hybrid system.Firstly,a constrained opportunistic power control model is built up to take advantage of the interference avoidance methodology in the presence of service requirement and power constraint.Then,biasing scheme and admission control are added to evade ineffective power consumption and maintain the feasibility of the system.Upon feasibility,a non-cooperative game is further formulated to exploit the profit in EC with minor influence on spectral efficiency(SE).The convergence of the DPC schemes is validated and their performance is confirmed via simulation results.
文摘This paper presents a transition-mode zero-voltage-switching inverter for the cooker magnetron of household microwave ovens. The inverter drives a leakage transformer to generate the required high voltage and stabilized current. For achieving zero-voltage switching, a transition-mode driver L6561 is utilized to detect the ending of transformer resonance and drive an insulated-gate-bipolar-transistor. As transistor is conducted, rectified direct-current voltage drives the transformer. While transistor is cut off, transformer resonates with a parallel capacitor. Transistor conduction time and magnetron power are controlled with a 16-bit digital signal controller dsPIC30F4011. For widening the working range, transistor conduction time is set to be inversely changed with line-frequency input voltage. To demonstrate the analysis and design of this paper, a 1 kW inverter circuit is built. Experimental results show the feasibility and usefulness of the designed magnetron power supply.
文摘Digital controllers are an interesting option for the next voltage regulator module (VRM) generation due to their wide programming possibilities. This paper discloses a very interested candidate to control DC-DC power converters, the Digital Signal Controller (DSC). For that matter, a study was done by carrying out simulations and experimental results. Moreover, an additional voltage-input feed-forward (IVFF) algorithm is given in order to show the benefits of this technology. Finally, a complete analysis of the quantization effect is presented, and its influence over the controller performance is included.
基金Supported by the Special Research Fund Provided by the Chonnam National University
文摘The quantum teleportation with the entangled thermai state is investigated based on the completely anisotropie Heisenberg chain in the presence of the externally inhomogeneous magnetic field. The effects of the anisotropy and magnetic field for the quantum fidelity are studied in detail The zero temperature limit and the features of the nonzero temperature for this nonclassical fdelity are obtained. We find that the quantum teleportation demands more stringent conditions than the therma/ entanglement of the resource by investigating the threshold temperature of the thermal concurrence and the criticai temperature of the maximai teleportation fidelity. The useful quantum teleportation should avoid the point of the phase transition of the system and the anisotropy of the chain and the external magnetic field can control the applicability of the resource in the quantum teleportation.
文摘The endocannabinoid system (ECS) is a key cellular signalling system that has been implicated in the regulation of diverse cellular functions. Importantly, growing evidence suggests that the biological actions of the ECS may, in part, be mediated through its ability to regulate the production and/or release of nitric oxide, a ubiquitous bioactive molecule, which functions as a versatile signalling intermediate. Herein, we review and discuss evidence pertaining to ECS-mediated regulation of nitric oxide production, as well as the involvement of reactive nitrogen species in regulating ECS-induced signal transduction by highlighting emerging work support- ing nitrergic modulation of ECS function. Importantly, the studies outlined reveal that interactions between the ECS and nitrergic sig- nalling systems can be both stimulatory and inhibitory in nature, depending on cellular context. Moreover, such crosstalk may act to maintain proper cell function, whereas abnormalities in either system can undermine cellular homoeostasis and contribute to vari- ous pathologies associated with their dysregulation. Consequently, future studies targeting these signalling systems may provide new insights into the potential role of the ECS-nitric oxide signalling axis in disease development and/or lead to the identification of novel therapeutic targets for the treatment of nitrosative stress-related neurological, cardiovascular, and metabolic disorders.
基金supported by the Doctoral Foundation of University of Jinan under Grant No.XBS1213
文摘This paper is concerned with the mixed H_2/H_∞ control problem for a new class of stochastic systems with exogenous disturbance signal.The most distinguishing feature,compared with the existing literatures,is that the systems are described by linear backward stochastic differential equations(BSDEs).The solution to this problem is obtained completely and explicitly by using an approach which is based primarily on the completion-of-squares technique.Two equivalent expressions for the H_2/H_∞ control are presented.Contrary to forward deterministic and stochastic cases,the solution to the backward stochastic H_2/H_∞ control is no longer feedback of the current state;rather,it is feedback of the entire history of the state.