Informative proteins are the proteins that play critical functional roles inside cells.They are the fundamental knowledge of translating bioinformatics into clinical practices.Many methods of identifying informative b...Informative proteins are the proteins that play critical functional roles inside cells.They are the fundamental knowledge of translating bioinformatics into clinical practices.Many methods of identifying informative biomarkers have been developed which are heuristic and arbitrary,without considering the dynamics characteristics of biological processes.In this paper,we present a generative model of identifying the informative proteins by systematically analyzing the topological variety of dynamic protein-protein interaction networks(PPINs).In this model,the common representation of multiple PPINs is learned using a deep feature generation model,based on which the original PPINs are rebuilt and the reconstruction errors are analyzed to locate the informative proteins.Experiments were implemented on data of yeast cell cycles and different prostate cancer stages.We analyze the effectiveness of reconstruction by comparing different methods,and the ranking results of informative proteins were also compared with the results from the baseline methods.Our method is able to reveal the critical members in the dynamic progresses which can be further studied to testify the possibilities for biomarker research.展开更多
In recent years, land use/cover dynamic change has become a key subject that needs to be dealt with in the study of global environmental change. In this paper, remote sensing and geographic information systems (GIS) a...In recent years, land use/cover dynamic change has become a key subject that needs to be dealt with in the study of global environmental change. In this paper, remote sensing and geographic information systems (GIS) are integrated to monitor, map, and quantify the land use/cover change in the southern part of Iraq (Basrah Province was taken as a case) by using a 1:250 000 mapping scale. Remote sensing and GIS software were used to classify Landsat TM in 1990 and Landsat ETM+ in 2003 imagery into five land use and land cover (LULC) classes: vegetation, sand, urban area, unused land, and water bodies. Supervised classification and normalized difference build-up index (NDBI) were used respectively to retrieve its urban boundary. An accuracy assessment was performed on the 2003 LULC map to determine the reliability of the map. Finally, GIS software was used to quantify and illustrate the various LULC conversions that took place over the 13-year span of time. Results showed that the urban area had increased by the rate of 1.2% per year, with area expansion from 3 299.1 km2 in 1990 to 3 794.9 km2 in 2003. Large vegetation area in the north and southeast were converted into urban construction land. The land use/cover changes of Basrah Province were mainly caused by rapid development of the urban economy and population immigration from the countryside. In addition, the former government policy of "returning farmland to transportation and huge expansion in military camps" was the major driving force for vegetation land change. The paper concludes that remote sensing and GIS can be used to create LULC maps. It also notes that the maps generated can be used to delineate the changes that take place over time.展开更多
基金supported by National Natural Science Foundation of China(30970780)Ph.D.Programs Foundation of Ministry of Education of China(20091103110005)+4 种基金the Project for the Innovation Team of Beijing,National Natural Science Foundation of China(81370038)the Beijing Natural Science Foundation(7142012)the Science and Technology Project of Beijing Municipal Education Commission(km201410005003)the Rixin Fund of Beijing University of Technology(2013-RX-L04)the Basic Research Fund of Beijing University of Technology
文摘Informative proteins are the proteins that play critical functional roles inside cells.They are the fundamental knowledge of translating bioinformatics into clinical practices.Many methods of identifying informative biomarkers have been developed which are heuristic and arbitrary,without considering the dynamics characteristics of biological processes.In this paper,we present a generative model of identifying the informative proteins by systematically analyzing the topological variety of dynamic protein-protein interaction networks(PPINs).In this model,the common representation of multiple PPINs is learned using a deep feature generation model,based on which the original PPINs are rebuilt and the reconstruction errors are analyzed to locate the informative proteins.Experiments were implemented on data of yeast cell cycles and different prostate cancer stages.We analyze the effectiveness of reconstruction by comparing different methods,and the ranking results of informative proteins were also compared with the results from the baseline methods.Our method is able to reveal the critical members in the dynamic progresses which can be further studied to testify the possibilities for biomarker research.
基金Supported by the Al-Basrah University, Iraq, the Geo-information Science and Technology Program ( No IRT 0438)China)
文摘In recent years, land use/cover dynamic change has become a key subject that needs to be dealt with in the study of global environmental change. In this paper, remote sensing and geographic information systems (GIS) are integrated to monitor, map, and quantify the land use/cover change in the southern part of Iraq (Basrah Province was taken as a case) by using a 1:250 000 mapping scale. Remote sensing and GIS software were used to classify Landsat TM in 1990 and Landsat ETM+ in 2003 imagery into five land use and land cover (LULC) classes: vegetation, sand, urban area, unused land, and water bodies. Supervised classification and normalized difference build-up index (NDBI) were used respectively to retrieve its urban boundary. An accuracy assessment was performed on the 2003 LULC map to determine the reliability of the map. Finally, GIS software was used to quantify and illustrate the various LULC conversions that took place over the 13-year span of time. Results showed that the urban area had increased by the rate of 1.2% per year, with area expansion from 3 299.1 km2 in 1990 to 3 794.9 km2 in 2003. Large vegetation area in the north and southeast were converted into urban construction land. The land use/cover changes of Basrah Province were mainly caused by rapid development of the urban economy and population immigration from the countryside. In addition, the former government policy of "returning farmland to transportation and huge expansion in military camps" was the major driving force for vegetation land change. The paper concludes that remote sensing and GIS can be used to create LULC maps. It also notes that the maps generated can be used to delineate the changes that take place over time.