The family members of the mitogen-activated protein (MAP) kinases mediate a wide variety of cellular behaviors in response to extracellular stimuli. One of the four main sub-groups, the p38 group of MAP kinases, serve...The family members of the mitogen-activated protein (MAP) kinases mediate a wide variety of cellular behaviors in response to extracellular stimuli. One of the four main sub-groups, the p38 group of MAP kinases, serve as a nexus for signal transduction and play a vital role in numerous biological processes. In this review, we highlight the known characteristics and components of the p38 pathway along with the mechanism and consequences of p38 activation. We focus on the role of p38 as a signal transduction mediator and examine the evidence linking p38 to inflammation, cell cycle, cell death, development, cell differentiation, senescence and tumorigenesis in specific cell types. Upstream and downstream components of p38 are described and questions remaining to be answered are posed. Finally, we propose several directions for future research on p38.展开更多
In this paper,on the basis of making full use of the characteristics of unconstrained generalized geometric programming(GGP),we establish a nonmonotonic trust region algorithm via the conjugate path for solving unco...In this paper,on the basis of making full use of the characteristics of unconstrained generalized geometric programming(GGP),we establish a nonmonotonic trust region algorithm via the conjugate path for solving unconstrained GGP problem.A new type of condensation problem is presented,then a particular conjugate path is constructed for the problem,along which we get the approximate solution of the problem by nonmonotonic trust region algorithm,and further prove that the algorithm has global convergence and quadratic convergence properties.展开更多
Signal transduction plays important roles in biological systems. Unfortunately, our knowledge about signaling pathways is far from complete. Specifically, the direction of signaling flows is less known even though the...Signal transduction plays important roles in biological systems. Unfortunately, our knowledge about signaling pathways is far from complete. Specifically, the direction of signaling flows is less known even though the signaling molecules of some signaling pathways have been determined. In this paper, we propose a novel hybrid intelligent method, namely HISP (Hybrid Intelligent approach for identifying directed Signaling Pathways), to determine both the topologies of signaling pathways and the direction of signaling flows within a pathway based on integer linear programming and genetic algorithm. By integrating the protein-protein interaction, gene expression, and gene knockout data, our HISP approach is able to determine the optimal topologies of signaling pathways in an accurate way. Benchmark results on yeast MAPK signaling pathways demonstrate the efficiency of our proposed approach. When applied to the EGFR/ErbB signaling pathway in human hepatocytes, HISP unveils a high-resolution signaling path- way, where many signaling interactions were missing by existing computational approaches.展开更多
文摘The family members of the mitogen-activated protein (MAP) kinases mediate a wide variety of cellular behaviors in response to extracellular stimuli. One of the four main sub-groups, the p38 group of MAP kinases, serve as a nexus for signal transduction and play a vital role in numerous biological processes. In this review, we highlight the known characteristics and components of the p38 pathway along with the mechanism and consequences of p38 activation. We focus on the role of p38 as a signal transduction mediator and examine the evidence linking p38 to inflammation, cell cycle, cell death, development, cell differentiation, senescence and tumorigenesis in specific cell types. Upstream and downstream components of p38 are described and questions remaining to be answered are posed. Finally, we propose several directions for future research on p38.
基金Supported by the National Science Foundation of China(10671126) Supported by the Shanghai Municipal Government Project(S30501)+3 种基金 Supported by the Innovation Fund Project for Graduate Student of Shanghai(JWCXSL1001) Supported by the Youth Foundation of Henan Polytechnic University(Q20093) Supported by the Applied Mathematics Provinciallevel Key Discipline of Henan Province Supported by Operational Research and Control Theory Key Discipline of Henan Polytechnic University
文摘In this paper,on the basis of making full use of the characteristics of unconstrained generalized geometric programming(GGP),we establish a nonmonotonic trust region algorithm via the conjugate path for solving unconstrained GGP problem.A new type of condensation problem is presented,then a particular conjugate path is constructed for the problem,along which we get the approximate solution of the problem by nonmonotonic trust region algorithm,and further prove that the algorithm has global convergence and quadratic convergence properties.
文摘Signal transduction plays important roles in biological systems. Unfortunately, our knowledge about signaling pathways is far from complete. Specifically, the direction of signaling flows is less known even though the signaling molecules of some signaling pathways have been determined. In this paper, we propose a novel hybrid intelligent method, namely HISP (Hybrid Intelligent approach for identifying directed Signaling Pathways), to determine both the topologies of signaling pathways and the direction of signaling flows within a pathway based on integer linear programming and genetic algorithm. By integrating the protein-protein interaction, gene expression, and gene knockout data, our HISP approach is able to determine the optimal topologies of signaling pathways in an accurate way. Benchmark results on yeast MAPK signaling pathways demonstrate the efficiency of our proposed approach. When applied to the EGFR/ErbB signaling pathway in human hepatocytes, HISP unveils a high-resolution signaling path- way, where many signaling interactions were missing by existing computational approaches.