岸船通信面临着介质对高频电磁波(HF:High Frequency Electromagnetic Wave)的吸收损耗、海面湍流对电磁波的散射、海面物体对电磁波的反射产生的多径信号干扰的问题。针对岸船通信通信传输信道的特点,建立其信道传输模型,求解出信道的...岸船通信面临着介质对高频电磁波(HF:High Frequency Electromagnetic Wave)的吸收损耗、海面湍流对电磁波的散射、海面物体对电磁波的反射产生的多径信号干扰的问题。针对岸船通信通信传输信道的特点,建立其信道传输模型,求解出信道的单位冲激响应,提出了在岸船通信中接收机基于双调角器抗多径干扰的方法。该方法能有效地利用多径信号的能量,不需提高发射机功率即能提高通信质量,抗多径效果好且容易实现。建立高频电磁波电离层反射模型,使用解三角形算法研究了岸船通信能保持通信的时间,便于完善通信协议,提高通信质量。仿真结果表明,该方法白天最长能保持4.5 h通信,夜晚最长能保持7.5 h通信。展开更多
It is extensively approved that Channel State Information(CSI) plays an important role for synergetic transmission and interference management. However, pilot overhead to obtain CSI with enough precision is a signific...It is extensively approved that Channel State Information(CSI) plays an important role for synergetic transmission and interference management. However, pilot overhead to obtain CSI with enough precision is a significant issue for wireless communication networks with massive antennas and ultra-dense cell. This paper proposes a learning- based channel model, which can estimate, refine, and manage CSI for a synergetic transmission system. It decomposes the channel impulse response into multiple paths, and uses a learning-based algorithm to estimate paths' parameters without notable degradation caused by sparse pilots. Both indoor measurement and outdoor measurement are conducted to verify the feasibility of the proposed channel model preliminarily.展开更多
The traditional geometrical depolarization model that single transmitter to single receiver provides a simple method of polarization channel modeling. It can obtain the geometrical depolarization effect of each path i...The traditional geometrical depolarization model that single transmitter to single receiver provides a simple method of polarization channel modeling. It can obtain the geometrical depolarization effect of each path if known the antenna configuration, the polarization field radiation pattern and the spatial distribution of scatters. With the development of communication technology, information transmission spectrum is more and more scarce. The original model provides only a single channel polarization state, so the information will be limited that the polarization state carries in the polarization modulation. The research is so significance that how to carries polarization modulation information by using multi-antenna polarization state. However, the present study shows that have no depolarization effect model for multi-antenna systems. In this paper, we propose a multi-antenna geometrical depolarization model. On the basis of a single antenna to calculate the depolarization effect of the model, and through simulation to analysis the main factors that influence the depolarization effect. This article provides a multi-antenna geometrical depolarization channel modeling that can applied to large-scale array antenna, and to some extent increase the speed of information transmission.展开更多
基金supported by National Basic Research Program of China (NO 2012CB316002)China’s 863 Project (NO 2014AA01A703)+2 种基金National Major Projec (NO. 2014ZX03003002-002)Program for New Century Excellent Talents in University (NCET-13-0321)Tsinghua University Initiative Scientific Research Program (2011THZ02-2)
文摘It is extensively approved that Channel State Information(CSI) plays an important role for synergetic transmission and interference management. However, pilot overhead to obtain CSI with enough precision is a significant issue for wireless communication networks with massive antennas and ultra-dense cell. This paper proposes a learning- based channel model, which can estimate, refine, and manage CSI for a synergetic transmission system. It decomposes the channel impulse response into multiple paths, and uses a learning-based algorithm to estimate paths' parameters without notable degradation caused by sparse pilots. Both indoor measurement and outdoor measurement are conducted to verify the feasibility of the proposed channel model preliminarily.
基金supported in part by the National Natural Science Foundation of China(61561039,61461044)the Natural Science Foundation of Ningxia(NZ14045)the Higher School Science and Technology Research Project of Ningxia(NGY2014051)
文摘The traditional geometrical depolarization model that single transmitter to single receiver provides a simple method of polarization channel modeling. It can obtain the geometrical depolarization effect of each path if known the antenna configuration, the polarization field radiation pattern and the spatial distribution of scatters. With the development of communication technology, information transmission spectrum is more and more scarce. The original model provides only a single channel polarization state, so the information will be limited that the polarization state carries in the polarization modulation. The research is so significance that how to carries polarization modulation information by using multi-antenna polarization state. However, the present study shows that have no depolarization effect model for multi-antenna systems. In this paper, we propose a multi-antenna geometrical depolarization model. On the basis of a single antenna to calculate the depolarization effect of the model, and through simulation to analysis the main factors that influence the depolarization effect. This article provides a multi-antenna geometrical depolarization channel modeling that can applied to large-scale array antenna, and to some extent increase the speed of information transmission.