It has been demonstrated that either Channel Allocation (CA) or Relay Selection (RS) can improve the performance in relaying networks separately. However, there is little work concerning their combination in multi...It has been demonstrated that either Channel Allocation (CA) or Relay Selection (RS) can improve the performance in relaying networks separately. However, there is little work concerning their combination in multi-cell uplink scenarios. In this paper, we investigate the issue which considers the CA and RS to optimize the system transmission rate in an uplink scenario, while maintaining the resource distribution fairness among users. This is first formulated as an optimization problem for a linear cellular system, where the same frequency channels can be reused in different cells. Based on the link and co-channel interference conditions, two low-complexity CA and RS schemes are then proposed with different decomposition se quences. Finally, numerical results are con ducted to verify the effectiveness of the pro posed CA and RS methods. Simulations re suits show that the proposed methods can yield significant improvements in system per formance in terms of average sum rate.展开更多
The energy efficiency(EE) of distributed antenna system with quality of service(Qo S) requirement is investigated over composite Rayleigh fading channel,where the shadow fading,path loss and Rayleigh fading are all co...The energy efficiency(EE) of distributed antenna system with quality of service(Qo S) requirement is investigated over composite Rayleigh fading channel,where the shadow fading,path loss and Rayleigh fading are all considered. Our aim is to maximize the EE which is defined as the ratio of the transmission rate to the total consumed power subject to the maximum transmit power of each remote antenna constraint and Qo S(target BER) requirement. According to the definition of EE and using the upper bound of average EE,the optimized objective function is provided. Based on this,utilizing Karush-KuhnTucker conditions and numerical calculation,a suboptimal energy efficient power allocation(PA) scheme is developed,and the closedform expression of PA coefficients is derived. The scheme may obtain the EE performance close to the existing optimal scheme. Moreover,it has relatively lower complexity than the existing scheme because only the statistic channel information and less iteration are required. Simulation results show the presented scheme is valid and can meet the target BER requirement,and the EE can be increased as target BER requirement decreases.展开更多
基金supported by the Key Project of State Key Laboratory of Rail Traffic and Control under Grant No.RCS2012ZZ004the Fundamental Research Funds for the Central Universities under Grant No. 2013YJS025
文摘It has been demonstrated that either Channel Allocation (CA) or Relay Selection (RS) can improve the performance in relaying networks separately. However, there is little work concerning their combination in multi-cell uplink scenarios. In this paper, we investigate the issue which considers the CA and RS to optimize the system transmission rate in an uplink scenario, while maintaining the resource distribution fairness among users. This is first formulated as an optimization problem for a linear cellular system, where the same frequency channels can be reused in different cells. Based on the link and co-channel interference conditions, two low-complexity CA and RS schemes are then proposed with different decomposition se quences. Finally, numerical results are con ducted to verify the effectiveness of the pro posed CA and RS methods. Simulations re suits show that the proposed methods can yield significant improvements in system per formance in terms of average sum rate.
基金partially supported by National Natural Science Foundation of China (61571225)Research Founding of Graduate Innovation Center in NUAA (kfjj20150410)+4 种基金the Fundamental Research Funds for the Central Universities (NS2015046,NS2016044)Shenzhen Strategic Emerging Industry Development Funds (JSGG20150331160845693)Qing Lan Project of JiangsuSix Talent Peaks Project in Jiangsu (DZXX-007)Open Research Fund of National Mobile Communications Research Laboratory of Southeast University (2012D17)
文摘The energy efficiency(EE) of distributed antenna system with quality of service(Qo S) requirement is investigated over composite Rayleigh fading channel,where the shadow fading,path loss and Rayleigh fading are all considered. Our aim is to maximize the EE which is defined as the ratio of the transmission rate to the total consumed power subject to the maximum transmit power of each remote antenna constraint and Qo S(target BER) requirement. According to the definition of EE and using the upper bound of average EE,the optimized objective function is provided. Based on this,utilizing Karush-KuhnTucker conditions and numerical calculation,a suboptimal energy efficient power allocation(PA) scheme is developed,and the closedform expression of PA coefficients is derived. The scheme may obtain the EE performance close to the existing optimal scheme. Moreover,it has relatively lower complexity than the existing scheme because only the statistic channel information and less iteration are required. Simulation results show the presented scheme is valid and can meet the target BER requirement,and the EE can be increased as target BER requirement decreases.