For orthogonal frequency division multiplexing (OFDM) wireless communication, the system throughput and data rate are usually limited by pilots, especially in a high mobility environment. In this paper, an enhanced it...For orthogonal frequency division multiplexing (OFDM) wireless communication, the system throughput and data rate are usually limited by pilots, especially in a high mobility environment. In this paper, an enhanced iterative joint channel estimation and symbol detection algorithm is proposed to enhance the system throughput and data rate. With lower pilot power, the proposed scheme increases system throughput firstly, and then the channel estimation and symbol detection proceed iteratively within one OFDM symbol to improve the BER performance. In the proposed algorithm, the original channel estimate of each OFDM symbol is based on the channel estimate of the previous OFDM symbol, thus the variation of the mobile channel is traced efficiently, so the number of pilots in the time domain can be reduced greatly. Besides reducing the system overhead, the proposed algorithm is also shown by simulation to give much better BER performance than the conventional iterative algorithm does.展开更多
A new channel estimation and data detection joint algorithm is proposed for multi-input multi-output (MIMO) - orthogonal frequency division multiplexing (OFDM) system using linear minimum mean square error (LMMSE...A new channel estimation and data detection joint algorithm is proposed for multi-input multi-output (MIMO) - orthogonal frequency division multiplexing (OFDM) system using linear minimum mean square error (LMMSE)- based space-alternating generalized expectation-maximization (SAGE) algorithm. In the proposed algorithm, every sub-frame of the MIMO-OFDM system is divided into some OFDM sub-blocks and the LMMSE-based SAGE algorithm in each sub-block is used. At the head of each sub-flame, we insert training symbols which are used in the initial estimation at the beginning. Channel estimation of the previous sub-block is applied to the initial estimation in the current sub-block by the maximum-likelihood (ML) detection to update channel estimatjon and data detection by iteration until converge. Then all the sub-blocks can be finished in turn. Simulation results show that the proposed algorithm can improve the bit error rate (BER) performance.展开更多
An iterative receiver is proposed based on the EM (Expectation-Maximization)algorithm for an OFDM-SDMA (Orthogonal Frequency Division Multiplexing-Space Division Multiple Access) system. By using a few pilots in every...An iterative receiver is proposed based on the EM (Expectation-Maximization)algorithm for an OFDM-SDMA (Orthogonal Frequency Division Multiplexing-Space Division Multiple Access) system. By using a few pilots in every OFDM symbol, both channel estimation and multiuser detection can be simultaneously obtained by iteration. The computer simulation results show this receiver can track channel variations and detect multiuser symbols for different number of users under time-varying multipath channels.展开更多
By analyzing the relationship between Basis Expansion Model (BEM) and Doppler spectrum, this letter proposed a quasi-MMSE-based BEM estimation scheme for doubly selective channels. Based on the assumption that the bas...By analyzing the relationship between Basis Expansion Model (BEM) and Doppler spectrum, this letter proposed a quasi-MMSE-based BEM estimation scheme for doubly selective channels. Based on the assumption that the basis coefficients are approximately independent and have the same variance for the same channel tap, the quasi-MMSE estimation shows approximately optimal performance and is robust to noise. Moreover, it can avoid a high Peak-to-Average Power Ratio (PAPR) by using continuous pilots. Performance of the proposed estimation scheme has been shown with computer simulations.展开更多
This paper analyzes performance of optimal channel estimation and multiuser detection(MUD) in a block-fading code-division multiple-access (CDMA) channel on the assumptions of randomspreading and large-system limit,by...This paper analyzes performance of optimal channel estimation and multiuser detection(MUD) in a block-fading code-division multiple-access (CDMA) channel on the assumptions of randomspreading and large-system limit,by using the replica method developed in statistical mechanics.The authors find that the asymptotic spectral efficiency of the linear minimum mean-squared error(LMMSE) MUD which was proposed and analyzed by Evans and Tse in 2000 is indistinguishable fromthat of the optimal MUD for small system loads.Our results imply that performance of MUD scarcelyimproves even if one spends more computational cost than that of the LMMSE MUD,i.e.,at most thecube of the number of users,on the above-described conditions.展开更多
文摘For orthogonal frequency division multiplexing (OFDM) wireless communication, the system throughput and data rate are usually limited by pilots, especially in a high mobility environment. In this paper, an enhanced iterative joint channel estimation and symbol detection algorithm is proposed to enhance the system throughput and data rate. With lower pilot power, the proposed scheme increases system throughput firstly, and then the channel estimation and symbol detection proceed iteratively within one OFDM symbol to improve the BER performance. In the proposed algorithm, the original channel estimate of each OFDM symbol is based on the channel estimate of the previous OFDM symbol, thus the variation of the mobile channel is traced efficiently, so the number of pilots in the time domain can be reduced greatly. Besides reducing the system overhead, the proposed algorithm is also shown by simulation to give much better BER performance than the conventional iterative algorithm does.
基金Supported by the National Natural Science Foundation of China (No. 61001105), the National Science and Technology Major Projects (No. 2011ZX03001- 007- 03) and Beijing Natural Science Foundation (No. 4102043).
文摘A new channel estimation and data detection joint algorithm is proposed for multi-input multi-output (MIMO) - orthogonal frequency division multiplexing (OFDM) system using linear minimum mean square error (LMMSE)- based space-alternating generalized expectation-maximization (SAGE) algorithm. In the proposed algorithm, every sub-frame of the MIMO-OFDM system is divided into some OFDM sub-blocks and the LMMSE-based SAGE algorithm in each sub-block is used. At the head of each sub-flame, we insert training symbols which are used in the initial estimation at the beginning. Channel estimation of the previous sub-block is applied to the initial estimation in the current sub-block by the maximum-likelihood (ML) detection to update channel estimatjon and data detection by iteration until converge. Then all the sub-blocks can be finished in turn. Simulation results show that the proposed algorithm can improve the bit error rate (BER) performance.
基金Supported by the National Natural Science Foundation of China (No. 60272079)
文摘An iterative receiver is proposed based on the EM (Expectation-Maximization)algorithm for an OFDM-SDMA (Orthogonal Frequency Division Multiplexing-Space Division Multiple Access) system. By using a few pilots in every OFDM symbol, both channel estimation and multiuser detection can be simultaneously obtained by iteration. The computer simulation results show this receiver can track channel variations and detect multiuser symbols for different number of users under time-varying multipath channels.
基金Supported by the National Natural Science Foundation of China (No.60462002).
文摘By analyzing the relationship between Basis Expansion Model (BEM) and Doppler spectrum, this letter proposed a quasi-MMSE-based BEM estimation scheme for doubly selective channels. Based on the assumption that the basis coefficients are approximately independent and have the same variance for the same channel tap, the quasi-MMSE estimation shows approximately optimal performance and is robust to noise. Moreover, it can avoid a high Peak-to-Average Power Ratio (PAPR) by using continuous pilots. Performance of the proposed estimation scheme has been shown with computer simulations.
基金support through Grant-in-Aid for Scientific Research on Priority Areas (No. 18079010)from MEXT, Japan
文摘This paper analyzes performance of optimal channel estimation and multiuser detection(MUD) in a block-fading code-division multiple-access (CDMA) channel on the assumptions of randomspreading and large-system limit,by using the replica method developed in statistical mechanics.The authors find that the asymptotic spectral efficiency of the linear minimum mean-squared error(LMMSE) MUD which was proposed and analyzed by Evans and Tse in 2000 is indistinguishable fromthat of the optimal MUD for small system loads.Our results imply that performance of MUD scarcelyimproves even if one spends more computational cost than that of the LMMSE MUD,i.e.,at most thecube of the number of users,on the above-described conditions.