Most resource allocation algorithms are based on interference power constraint in cognitive radio networks.Instead of using conventional primary user interference constraint,we give a new criterion called allowable si...Most resource allocation algorithms are based on interference power constraint in cognitive radio networks.Instead of using conventional primary user interference constraint,we give a new criterion called allowable signal to interference plus noise ratio(SINR) loss constraint in cognitive transmission to protect primary users.Considering power allocation problem for cognitive users over flat fading channels,in order to maximize throughput of cognitive users subject to the allowable SINR loss constraint and maximum transmit power for each cognitive user,we propose a new power allocation algorithm.The comparison of computer simulation between our proposed algorithm and the algorithm based on interference power constraint is provided to show that it gets more throughput and provides stability to cognitive radio networks.展开更多
This paper investigates channel allocation and cognitive radio networks. The color-sensitive graph power control schemes in OFDM-based multi-hop coloring (CSGC) model is viewed as an efficient solution to the spectr...This paper investigates channel allocation and cognitive radio networks. The color-sensitive graph power control schemes in OFDM-based multi-hop coloring (CSGC) model is viewed as an efficient solution to the spectrum assignment problem. The model is extended to combine with the power con- trol strategy to avoid interference among secondary users and adapt dynamic topology. The optimiza- tion problem is formulated encompassing the channel allocation and power control with the interfer- ence constrained below a tolerable limit. Meanwhile, the proposed resource allocation scheme takes the fairness of secondary users into account in obtaining the solution of optimization. Numerical re- suits show that the proposed strategy outperforms the existing spectrum assignment algorithms on the performance of both the network throughput and minimum route bandwidth of all routes, as well as the number of connected multi-hop routes which implies the fairness among secondary users.展开更多
基金ACKNOWLEDGEMENTS This work is supported by National Natural Science Foundation of China (No. 61171079). The authors would like to thank the editors and the anonymous reviewers for their detailed constructive comments that helped to improve the presentation of this paper.
文摘Most resource allocation algorithms are based on interference power constraint in cognitive radio networks.Instead of using conventional primary user interference constraint,we give a new criterion called allowable signal to interference plus noise ratio(SINR) loss constraint in cognitive transmission to protect primary users.Considering power allocation problem for cognitive users over flat fading channels,in order to maximize throughput of cognitive users subject to the allowable SINR loss constraint and maximum transmit power for each cognitive user,we propose a new power allocation algorithm.The comparison of computer simulation between our proposed algorithm and the algorithm based on interference power constraint is provided to show that it gets more throughput and provides stability to cognitive radio networks.
基金Supported by the National Natural Science Foundation of China(No.61461006)the Guangxi Province Natural Science Foundation(No.2013GXNSFBA19271)
文摘This paper investigates channel allocation and cognitive radio networks. The color-sensitive graph power control schemes in OFDM-based multi-hop coloring (CSGC) model is viewed as an efficient solution to the spectrum assignment problem. The model is extended to combine with the power con- trol strategy to avoid interference among secondary users and adapt dynamic topology. The optimiza- tion problem is formulated encompassing the channel allocation and power control with the interfer- ence constrained below a tolerable limit. Meanwhile, the proposed resource allocation scheme takes the fairness of secondary users into account in obtaining the solution of optimization. Numerical re- suits show that the proposed strategy outperforms the existing spectrum assignment algorithms on the performance of both the network throughput and minimum route bandwidth of all routes, as well as the number of connected multi-hop routes which implies the fairness among secondary users.