Based on the transform-domain characteristics of pilot signals,a band suppression filter is used as a transform-domain filter to restrain the interference of noise in channel estimation.The performance effect on chann...Based on the transform-domain characteristics of pilot signals,a band suppression filter is used as a transform-domain filter to restrain the interference of noise in channel estimation.The performance effect on channel estimation for an orthogonal frequency division multiplex (OFDM) system by different energy coefficients in the transform domain and the energy coefficient under the different signal-to-noise ratios (SNR) are also analyzed.A new energy coefficient expression is deduced.It is theoretically proven that dynamically selecting an energy coefficient can significantly improve the performance of channel estimation.Simulation results show that the proposed algorithm can achieve better performance close to the theoretic bounds of perfect channel estimation. The algorithm is adapted to single-input single-output (SISO) OFDM and multi-input multi-output (MIMO) OFDM systems.展开更多
Under analyzing several characteristics of frequency-selective fast fading channels, such as large Doppler spread and multi-path interference, a low-dimensional Kalman filter method based on pilot signals is presented...Under analyzing several characteristics of frequency-selective fast fading channels, such as large Doppler spread and multi-path interference, a low-dimensional Kalman filter method based on pilot signals is presented for the channel estimation of orthogonal frequency division multiplexing (OFDM) systems. For simplicity, a one-dimensional autoregressive (AR) process is used to model the time-varying channel, and the least square (LS) algorithm based on pilot signals is adopted to track the time-varying channel fading factor a. The low-dimensional Kalman filter estimator greatly reduces the complexity of the high-dimensional Kalman filter. To utilize the relationship of fading channel in frequency domain, a minimum mean-square-error (MMSE) combiner is used to refine the estimation results. The simulation results in the frequency band of 5.5 GHz show that the proposed method achieves a good symbol error rate (SER) performance close to the theoretical bound of ideal channel estimation.展开更多
In order to reduce the pilot number and improve spectral efficiency, recently emerged compressive sensing (CS) is applied to the digital broadcast channel estimation. According to the six channel profiles of the Eur...In order to reduce the pilot number and improve spectral efficiency, recently emerged compressive sensing (CS) is applied to the digital broadcast channel estimation. According to the six channel profiles of the European Telecommunication Standards Institute(ETSI) digital radio mondiale (DRM) standard, the subspace pursuit (SP) algorithm is employed for delay spread and attenuation estimation of each path in the case where the channel profile is identified and the multipath number is known. The stop condition for SP is that the sparsity of the estimation equals the multipath number. For the case where the multipath number is unknown, the orthogonal matching pursuit (OMP) algorithm is employed for channel estimation, while the stop condition is that the estimation achieves the noise variance. Simulation results show that with the same number of pilots, CS algorithms outperform the traditional cubic-spline-interpolation-based least squares (LS) channel estimation. SP is also demonstrated to be better than OMP when the multipath number is known as a priori.展开更多
In order to increase the transmission efficiency,a subspace-based algorithm for blind channel estimation using second-order statistics is proposed in orthogonal frequency division multiplexing (OFDM) systems.Because t...In order to increase the transmission efficiency,a subspace-based algorithm for blind channel estimation using second-order statistics is proposed in orthogonal frequency division multiplexing (OFDM) systems.Because the transmission equation of OFDM systems does not exactly have the desired structure to directly derive a subspace algorithm,the algorithm first divides the OFDM signals into three parts,then,by exploiting the redundancy introduced by the cyclic prefix (CP) in OFDM signals,a new equation with Toeplitz channel matrix is derived.Based on the equation,a new blind subspace algorithm is developed.Toeplitz structure eases the derivation of the subspace algorithm and practical computation.Moreover the algorithm does not change the existing OFDM system,is robust to channel order overdetermination,and the channel zero locations.The performances are demonstrated by simulation results.展开更多
A simple channel estimator for space-time coded orthogonal frequency division multiplexing (OFDM) systems in rapid fading channels is proposed. The channels at the training bauds are estimated using the EM (expectatio...A simple channel estimator for space-time coded orthogonal frequency division multiplexing (OFDM) systems in rapid fading channels is proposed. The channels at the training bauds are estimated using the EM (expectation-maximization) algorithm, while the channels at the data bauds are estimated based on the method for modelling the time-varying channel as the linear combination of several time-invariant " Doppler channels". Computer simulations showed that this estimator outperforms the decision-directed tracking in rapid fading channels and that the performance of this method can be improved by iteration.展开更多
The major constraint on the performance of orthogonal frequency division multiplexing (OFDM) based underwater acoustic (UWA) communication is to keep subcarriers orthogonal. In this paper, Doppler estimation and t...The major constraint on the performance of orthogonal frequency division multiplexing (OFDM) based underwater acoustic (UWA) communication is to keep subcarriers orthogonal. In this paper, Doppler estimation and the respective compensation technique along with various diversity techniques were deliberated for OFDM-based systems best suited for underwater wireless information exchange. In practice, for mobile communication, adjustment and tuning of transducers in order to get spatial diversity is extremely difficult. Considering the relatively low coherence bandwidth in UWA, the frequency diversity design with the Doppler compensation function was elaborated here. The outfield experiments of mobile underwater acoustic communication (UWAC) based on OFDM were carried out with 0.17 bit/(s-Hz) spectral efficiency. The validity and the dependability of the scheme were also analyzed.展开更多
A modified time domain interpolation method is proposed for orthogonal frequency division multiplexing(OFDM)systems to address the problem that time domain interpolation in the least square(LS)channel estimation metho...A modified time domain interpolation method is proposed for orthogonal frequency division multiplexing(OFDM)systems to address the problem that time domain interpolation in the least square(LS)channel estimation method based on comb-type pilots cannot choose the pilot spacing flexibly.Firstly,the estimated channel frequency response(CFR)at pilot positions in the frequency domain is obtained by LS channel estimation based on comb-type pilots,and the estimated channel impulse response(CIR)in the time domain is obtained by linear interpolation and inverse fast Fourier transform(IFFT).Secondly,the error of the estimated CIR obtained by linear interpolation is analyzed by theoretical deduction,and a method for correcting it is proposed.Finally,an estimated CFR at all subcarrier positions in the frequency domain is obtained by performing zero padding in the time domain and fast Fourier transform(FFT)on the modified CIR.The simulation results suggest that the proposed method gives similar performance to time domain interpolation,yet it does not need to meet the condition of time domain interpolation that the number of subcarriers must be an integral multiple of pilot spacing to use it.The proposed method allows for flexible pilot spacing,reducing the number of pilots and the consumption of subcarriers used for channel estimation.展开更多
The joint power allocation(PA)and beamforming(BF)design problem is studied to maximize the energy efficiency of a two-user downlink millimeter-wave system with non-orthogonal multiple access under imperfect channel st...The joint power allocation(PA)and beamforming(BF)design problem is studied to maximize the energy efficiency of a two-user downlink millimeter-wave system with non-orthogonal multiple access under imperfect channel state information(CSI).By means of block coordinate descent,convex-concave procedure,and successive convex approximate,we propose a suboptimal joint PA and BF design scheme to address this non-convex problem.Simulation results verify that the proposed joint PA and BF design scheme is more effective when compared to some existing schemes.展开更多
文摘Based on the transform-domain characteristics of pilot signals,a band suppression filter is used as a transform-domain filter to restrain the interference of noise in channel estimation.The performance effect on channel estimation for an orthogonal frequency division multiplex (OFDM) system by different energy coefficients in the transform domain and the energy coefficient under the different signal-to-noise ratios (SNR) are also analyzed.A new energy coefficient expression is deduced.It is theoretically proven that dynamically selecting an energy coefficient can significantly improve the performance of channel estimation.Simulation results show that the proposed algorithm can achieve better performance close to the theoretic bounds of perfect channel estimation. The algorithm is adapted to single-input single-output (SISO) OFDM and multi-input multi-output (MIMO) OFDM systems.
文摘Under analyzing several characteristics of frequency-selective fast fading channels, such as large Doppler spread and multi-path interference, a low-dimensional Kalman filter method based on pilot signals is presented for the channel estimation of orthogonal frequency division multiplexing (OFDM) systems. For simplicity, a one-dimensional autoregressive (AR) process is used to model the time-varying channel, and the least square (LS) algorithm based on pilot signals is adopted to track the time-varying channel fading factor a. The low-dimensional Kalman filter estimator greatly reduces the complexity of the high-dimensional Kalman filter. To utilize the relationship of fading channel in frequency domain, a minimum mean-square-error (MMSE) combiner is used to refine the estimation results. The simulation results in the frequency band of 5.5 GHz show that the proposed method achieves a good symbol error rate (SER) performance close to the theoretical bound of ideal channel estimation.
基金The National Natural Science Foundation of China (No.60872075)the National High Technology Research and Development Program of China (863 Program) (No.2008AA01Z227)
文摘In order to reduce the pilot number and improve spectral efficiency, recently emerged compressive sensing (CS) is applied to the digital broadcast channel estimation. According to the six channel profiles of the European Telecommunication Standards Institute(ETSI) digital radio mondiale (DRM) standard, the subspace pursuit (SP) algorithm is employed for delay spread and attenuation estimation of each path in the case where the channel profile is identified and the multipath number is known. The stop condition for SP is that the sparsity of the estimation equals the multipath number. For the case where the multipath number is unknown, the orthogonal matching pursuit (OMP) algorithm is employed for channel estimation, while the stop condition is that the estimation achieves the noise variance. Simulation results show that with the same number of pilots, CS algorithms outperform the traditional cubic-spline-interpolation-based least squares (LS) channel estimation. SP is also demonstrated to be better than OMP when the multipath number is known as a priori.
文摘In order to increase the transmission efficiency,a subspace-based algorithm for blind channel estimation using second-order statistics is proposed in orthogonal frequency division multiplexing (OFDM) systems.Because the transmission equation of OFDM systems does not exactly have the desired structure to directly derive a subspace algorithm,the algorithm first divides the OFDM signals into three parts,then,by exploiting the redundancy introduced by the cyclic prefix (CP) in OFDM signals,a new equation with Toeplitz channel matrix is derived.Based on the equation,a new blind subspace algorithm is developed.Toeplitz structure eases the derivation of the subspace algorithm and practical computation.Moreover the algorithm does not change the existing OFDM system,is robust to channel order overdetermination,and the channel zero locations.The performances are demonstrated by simulation results.
文摘A simple channel estimator for space-time coded orthogonal frequency division multiplexing (OFDM) systems in rapid fading channels is proposed. The channels at the training bauds are estimated using the EM (expectation-maximization) algorithm, while the channels at the data bauds are estimated based on the method for modelling the time-varying channel as the linear combination of several time-invariant " Doppler channels". Computer simulations showed that this estimator outperforms the decision-directed tracking in rapid fading channels and that the performance of this method can be improved by iteration.
基金Supported by the National High Technology Research and Development Program of China (2009AA093601-2)the National Defense Foundation Research (B2420110007)
文摘The major constraint on the performance of orthogonal frequency division multiplexing (OFDM) based underwater acoustic (UWA) communication is to keep subcarriers orthogonal. In this paper, Doppler estimation and the respective compensation technique along with various diversity techniques were deliberated for OFDM-based systems best suited for underwater wireless information exchange. In practice, for mobile communication, adjustment and tuning of transducers in order to get spatial diversity is extremely difficult. Considering the relatively low coherence bandwidth in UWA, the frequency diversity design with the Doppler compensation function was elaborated here. The outfield experiments of mobile underwater acoustic communication (UWAC) based on OFDM were carried out with 0.17 bit/(s-Hz) spectral efficiency. The validity and the dependability of the scheme were also analyzed.
基金The National Natural Science Foundation of China(No.51975117)。
文摘A modified time domain interpolation method is proposed for orthogonal frequency division multiplexing(OFDM)systems to address the problem that time domain interpolation in the least square(LS)channel estimation method based on comb-type pilots cannot choose the pilot spacing flexibly.Firstly,the estimated channel frequency response(CFR)at pilot positions in the frequency domain is obtained by LS channel estimation based on comb-type pilots,and the estimated channel impulse response(CIR)in the time domain is obtained by linear interpolation and inverse fast Fourier transform(IFFT).Secondly,the error of the estimated CIR obtained by linear interpolation is analyzed by theoretical deduction,and a method for correcting it is proposed.Finally,an estimated CFR at all subcarrier positions in the frequency domain is obtained by performing zero padding in the time domain and fast Fourier transform(FFT)on the modified CIR.The simulation results suggest that the proposed method gives similar performance to time domain interpolation,yet it does not need to meet the condition of time domain interpolation that the number of subcarriers must be an integral multiple of pilot spacing to use it.The proposed method allows for flexible pilot spacing,reducing the number of pilots and the consumption of subcarriers used for channel estimation.
基金supported in part by the Fundamental Research Funds of Nanjing University of Aeronautics and Astronautics(No.kfjj20200414)the Natural Science Foundation of Jiangsu Province in China (No. BK20181289)the Open Research Fund of State Key Laboratory of Millimeter Waves of Southeast University (No.K202215)
文摘The joint power allocation(PA)and beamforming(BF)design problem is studied to maximize the energy efficiency of a two-user downlink millimeter-wave system with non-orthogonal multiple access under imperfect channel state information(CSI).By means of block coordinate descent,convex-concave procedure,and successive convex approximate,we propose a suboptimal joint PA and BF design scheme to address this non-convex problem.Simulation results verify that the proposed joint PA and BF design scheme is more effective when compared to some existing schemes.