The catalytic cracking of light diesel oil (235–337 °C) over gold‐modified ZSM‐5 was investigated in a small confined fluidized bed at 460 °C and ambient pressure. Different Au/ZSM‐5 catalysts were p...The catalytic cracking of light diesel oil (235–337 °C) over gold‐modified ZSM‐5 was investigated in a small confined fluidized bed at 460 °C and ambient pressure. Different Au/ZSM‐5 catalysts were prepared by a modified deposition‐precipitation method by changing the preparation procedure and the amount of gold loading and were characterized by X‐ray diffraction, N2 adsorp‐tion‐desorption, temperature‐programmed desorption of NH3, transmission electron microscopy and inductively coupled plasma spectrometer. It was found that a small amount of gold had a posi‐tive effect on the catalytic cracking of light diesel oil and increased propylene production at a rela‐tively low temperature. The maintenance of the ZSM‐5 MFI structure, pore size distribution and the density of weak and strong acid sites of the Au/ZSM‐5 catalysts depended on the preparation pa‐rameters and the Au loading. Simultaneous enhancement of the micro‐activity and propylene pro‐duction relies on a synergy between the pore size distribution and the relative intensity of the weak and strong acid sites. A significant improvement in the micro‐activity index with an increase of 4.5 units and in the propylene selectivity with an increase of 23.2 units was obtained over the Au/ZSM‐5 catalyst with an actual Au loading of 0.17 wt%.展开更多
DNA double-strand breaks (DSBs) are critical lesions that can result in cell death or a wide variety of genetic alterations including largeor small-scale deletions, loss of heterozygosity, translocations, and chromo...DNA double-strand breaks (DSBs) are critical lesions that can result in cell death or a wide variety of genetic alterations including largeor small-scale deletions, loss of heterozygosity, translocations, and chromosome loss. DSBs are repaired by non-homologous end-joining (NHEJ) and homologous recombination (HR), and defects in these pathways cause genome instability and promote tumorigenesis. DSBs arise from endogenous sources including reactive oxygen species generated during cellular metabolism, collapsed replication forks, and nucleases, and from exogenous sources including ionizing radiation and chemicals that directly or indirectly damage DNA and are commonly used in cancer therapy. The DSB repair pathways appear to compete for DSBs, but the balance between them differs widely among species, between different cell types of a single species, and during different cell cycle phases of a single cell type. Here we review the regulatory factors that regulate DSB repair by NHEJ and HR in yeast and higher eukaryotes. These factors include regulated expression and phosphorylation of repair proteins, chromatin modulation of repair factor accessibility, and the availability of homologous repair templates. While most DSB repair proteins appear to function exclusively in NHEJ or HR, a number of proteins influence both pathways, including the MRE11/RAD50/NBS1(XRS2) complex, BRCA1, histone H2AX, PARP-1, RAD18, DNA-dependent protein kinase catalytic subunit (DNA-PKcs), and ATM. DNA-PKcs plays a role in mammalian NHEJ, but it also influences HR through a complex regulatory network that may involve crosstalk with ATM, and the regulation of at least 12 proteins involved in HR that are phosphorylated by DNA-PKcs and/or ATM.展开更多
The AEI cavity of SAPO-18 catalyst was modified with zinc cations with the conventional ion exchange procedure.The cavity modification effectively tunes the product selectivity,and shifts the products from mainly prop...The AEI cavity of SAPO-18 catalyst was modified with zinc cations with the conventional ion exchange procedure.The cavity modification effectively tunes the product selectivity,and shifts the products from mainly propylene to comparable production of ethylene and propylene in methanol to olefin(MTO)reaction.The incorporation of zinc ions and the generation of bicyclic aromatic species in the AEI cavity of SAPO-18 catalysts introduce additional diffusion hindrance that exert greater influence on the relatively bulky products(e.g.propylene and higher olefins),which increase the selectivity to small-sized products(e.g.ethylene).It appears that the incorporated zinc cations facilitate the generation of lower methylbenzenes which promote the generation of ethylene.The cavity modification via incorporating zinc ions effectively tunes the product selectivity over SAPO molecular sieves with relatively larger cavity,which provides a novel strategy to develop the potential alternative to SAPO-34 catalysts for industrial MTO reaction.展开更多
Cerium‐based catalysts are very attractive for the catalytic abatement of nitrogen oxides(NOx)emitted from stationary sources.However,the main challenge is still achieving satisfactory catalytic activity in the low‐...Cerium‐based catalysts are very attractive for the catalytic abatement of nitrogen oxides(NOx)emitted from stationary sources.However,the main challenge is still achieving satisfactory catalytic activity in the low‐temperature range and tolerance to SO2 poisoning.In the present work,two series of Mo‐modified CeO_(2)catalysts were respectively obtained through a wet impregnation method(Mo‐CeO_(2))and a co‐precipitation method(MoCe‐cp),and the roles of the Mo species were systematically investigated.Activity tests showed that the Mo‐CeO_(2)catalyst displayed much higher NO conversion at low temperature and anti‐SO2 ability than MoCe‐cp.The optimal Mo‐CeO_(2)catalyst displayed over 80%NO elimination efficiency even at 150°C and remarkable SO2 resistance at 250°C(nearly no activity loss after 40 h test).The characterization results indicated that the introduced Mo species were highly dispersed on the Mo‐CeO_(2)catalyst surface,thereby providing more Brønsted acid sites and inhibiting the formation of stable adsorbed NOx species.These factors synergistically promote the selective catalytic reduction(SCR)reaction in accordance with the Eley‐Rideal(E‐R)reaction path on the Mo‐CeO_(2)catalyst.Additionally,the molybdenum surface could protect CeO_(2)from SO2 poisoning;thus,the reducibility of the Mo‐CeO_(2)catalyst declined slightly to an adequate level after sulfation.The results in this work indicate that surface modification with Mo species may be a simple method of developing highly efficient cerium‐based SCR catalysts with superior SO2 durability.展开更多
The effects of acid surface dissolution on the flotation kinetics of ilmenite(IL)and its common accompanied gangue minerals including olivine-pyroxene(Ol-Px),tremolite-clinochlore(Tr-Cch)and quartz were investigated.T...The effects of acid surface dissolution on the flotation kinetics of ilmenite(IL)and its common accompanied gangue minerals including olivine-pyroxene(Ol-Px),tremolite-clinochlore(Tr-Cch)and quartz were investigated.The results show that through the surface dissolution the adsorption rate constant for ilmenite increases from 5.272 to 8.441 mol/(g·min)while it decreases for Ol-Px,Tr-Cch and quartz from 6.332,7.309 and 7.774 mol/(g·min)to 5.034,6.223 and 7.371 mol/(g·min),respectively.Also,the flotation experiments on a binary mixture of minerals indicate that after surface dissolution the values of modified rate constant for ilmenite flotation from Ol-Px,Tr-Cch and quartz are enhanced from 36.15,36.52 and 47.86 min-1 to 41.72,45.78 and 56.24 min-1,respectively.This results in the improvement of kinetic selectivity index(SI)in the separation of treated ilmenite from gangue minerals.As evidenced by ICP-MS analysis,the decrease of kinetic parameters for gangue minerals can be due to the removal of Fe^2+,Ca^2+and Mg^2+ions from their surfaces,which results in the lack of enough active sites to interact with collector species.As confirmed by contact angle measurements,this prevents the formation of a stable hydrophobic layer on the minerals surfaces for creating stable attachments between minerals and bubbles.Generally,the improvement of ilmenite flotation kinetics has a negative correlation with the iron content in its accompanied gangue minerals.展开更多
In view of the hidden perils concerning building safety in the design, material selection, and construction during current building fitment, the authors have analyzed the influence of main-body safety, fitment compone...In view of the hidden perils concerning building safety in the design, material selection, and construction during current building fitment, the authors have analyzed the influence of main-body safety, fitment components safety, the connection between fitment component and main body, and structural safety upon building safety during building fitment. Environmental safety relating to fitment construction, and choice and use of fitment materials should be taken into consideration during building fitment. The authors have proposed a series of measures to solve the impact of building fitment upon building safety.展开更多
The high-temperature(HT) and low-temperature(LT) hydrothermal stabilities of molecular-sieve-based catalysts are important for the selective catalytic reduction of NOx with ammonia(NH3-SCR). In this paper, we report a...The high-temperature(HT) and low-temperature(LT) hydrothermal stabilities of molecular-sieve-based catalysts are important for the selective catalytic reduction of NOx with ammonia(NH3-SCR). In this paper, we report a catalyst, Cu2+ loading SAPO-17, synthesized using cyclohexylamine(CHA), which is commercially available and inexpensive and is utilized in NH3-SCR reduction for the first time. After systematic investigations on the optimization of Si and Cu2+ contents, it was concluded that Cu-SAPO-17-8.0%-0.22 displays favorable catalytic performance, even after being heated at 353 K for 24 h and at 973 K for 16 h. Moreover, the locations of CHAs, host–guest interaction and the Bronsted acid sites were explored by Rietveld refinement against powder X-ray diffraction data of as-made SAPO-17-8.0%. The refinement results showed that two CHAs exist within one eri cage and that the protonated CHA forms a hydrogen bond with O4, which indicates that the proton bonding with O4 will form the Bronsted acid site after the calcination.展开更多
In maxillofacial surgery, there is a significant need for the design and fabrication of porous scaffolds with customizable bionic structures and mechanical properties suitable for bone tissue engineering. In this pape...In maxillofacial surgery, there is a significant need for the design and fabrication of porous scaffolds with customizable bionic structures and mechanical properties suitable for bone tissue engineering. In this paper, we characterize the porous Ti6Al4V implant, which is one of the most promising and attractive biomedical applications due to the similarity of its modulus to human bones. We describe the mechanical properties of this implant, which we suggest is capable of providing important biological functions for bone tissue regeneration. We characterize a novel bionic design and fabrication process for porous implants. A design concept of “reducing dimensions and designing layer by layer” was used to construct layered slice and rod-connected mesh structure (LSRCMS) implants. Porous LSRCMS implants with different parameters and porosities were fabricated by selective laser melting (SLM). Printed samples were evaluated by microstructure characterization, specific mechanical properties were analyzed by mechanical tests, and finite element analysis was used to digitally calculate the stress characteristics of the LSRCMS under loading forces. Our results show that the samples fabricated by SLM had good structure printing quality with reasonable pore sizes. The porosity, pore size, and strut thickness of manufactured samples ranged from (60.95± 0.27)% to (81.23±0.32)%,(480±28) to (685±31)μm, and (263±28) to (265±28)μm, respectively. The compression results show that the Young’s modulus and the yield strength ranged from (2.23±0.03) to (6.36±0.06) GPa and (21.36±0.42) to (122.85±3.85) MPa, respectively. We also show that the Young’s modulus and yield strength of the LSRCMS samples can be predicted by the Gibson-Ashby model. Further, we prove the structural stability of our novel design by finite element analysis. Our results illustrate that our novel SLM-fabricated porous Ti6Al4V scaffolds based on an LSRCMS are a promising material for bone implants, and are potentially applicable to the field of bone defect repair.展开更多
When incompletely isolated taxa coexist in a patchy environment (e.g. mosaic hybrid zones, host-race complexes), patterns of variation may differ between selected traits/genes and neutral markers. While the genetic ...When incompletely isolated taxa coexist in a patchy environment (e.g. mosaic hybrid zones, host-race complexes), patterns of variation may differ between selected traits/genes and neutral markers. While the genetic structure of selected traits/loci tends to coincide with habitat variables (producing Genetic-Environment Association or GEA), genetic differentiation at neutral loci unlinked to any selected locus rather depends on geographic connectivity at a large scale (e.g. Isolation- By-Distance or IBD), although these loci often display GEA at a small scale. This discrepancy has been repeatedly taken as evi- dence for parallel primary divergence driven by local adaptation. We argue that this interpretation needs to be addressed more thoroughly by considering the alternative hypothesis that speciation was initiated in allopatry and secondary introgression has subsequently erased the signal of past differentiation at neutral loci. We present a model of neutral introgression after secondary contact in a mosaic hybrid zone, which describes how GEAs dissipate with time and how neutral variation self-organizes accord- ing to the environmental and geographic structures. We show that although neutral loci can be affected by environmental selection they are often more affected by history and connectivity: the neutral structure retains the initial geographic separation more than it correlates with the environment during the colonization and introgression phases, and then converges to a migration-drift balance, the most frequent outcome of which is GEA at a local scale but IBD at a large scale. This is the exact pattern usually attributed to parallel ecological speciation. Introgression is heterogeneous in space and depends on the landscape structure (e.g. it is faster in small patches, which are more impacted by immigration). Furthermore, there is no directionality in the association and it is possi- ble to observe reversed GEAs between distant regions. We argue that the history of differentiation should ideally be reconstructed with selected loci or neutral loci linked to them, not neutral ones, and review some case studies for which the hypothesis of a long co-existence of co-adapted genetic backgrounds might have been refuted too hastily [Current Zoology 59 (1): 72-86, 2013].展开更多
基金supported by the Shandong Taishan Scholarship, the Yantai double-hundreds talents planthe Shandong Natural Science Founda-tion (ZR2015BM006)~~
文摘The catalytic cracking of light diesel oil (235–337 °C) over gold‐modified ZSM‐5 was investigated in a small confined fluidized bed at 460 °C and ambient pressure. Different Au/ZSM‐5 catalysts were prepared by a modified deposition‐precipitation method by changing the preparation procedure and the amount of gold loading and were characterized by X‐ray diffraction, N2 adsorp‐tion‐desorption, temperature‐programmed desorption of NH3, transmission electron microscopy and inductively coupled plasma spectrometer. It was found that a small amount of gold had a posi‐tive effect on the catalytic cracking of light diesel oil and increased propylene production at a rela‐tively low temperature. The maintenance of the ZSM‐5 MFI structure, pore size distribution and the density of weak and strong acid sites of the Au/ZSM‐5 catalysts depended on the preparation pa‐rameters and the Au loading. Simultaneous enhancement of the micro‐activity and propylene pro‐duction relies on a synergy between the pore size distribution and the relative intensity of the weak and strong acid sites. A significant improvement in the micro‐activity index with an increase of 4.5 units and in the propylene selectivity with an increase of 23.2 units was obtained over the Au/ZSM‐5 catalyst with an actual Au loading of 0.17 wt%.
文摘DNA double-strand breaks (DSBs) are critical lesions that can result in cell death or a wide variety of genetic alterations including largeor small-scale deletions, loss of heterozygosity, translocations, and chromosome loss. DSBs are repaired by non-homologous end-joining (NHEJ) and homologous recombination (HR), and defects in these pathways cause genome instability and promote tumorigenesis. DSBs arise from endogenous sources including reactive oxygen species generated during cellular metabolism, collapsed replication forks, and nucleases, and from exogenous sources including ionizing radiation and chemicals that directly or indirectly damage DNA and are commonly used in cancer therapy. The DSB repair pathways appear to compete for DSBs, but the balance between them differs widely among species, between different cell types of a single species, and during different cell cycle phases of a single cell type. Here we review the regulatory factors that regulate DSB repair by NHEJ and HR in yeast and higher eukaryotes. These factors include regulated expression and phosphorylation of repair proteins, chromatin modulation of repair factor accessibility, and the availability of homologous repair templates. While most DSB repair proteins appear to function exclusively in NHEJ or HR, a number of proteins influence both pathways, including the MRE11/RAD50/NBS1(XRS2) complex, BRCA1, histone H2AX, PARP-1, RAD18, DNA-dependent protein kinase catalytic subunit (DNA-PKcs), and ATM. DNA-PKcs plays a role in mammalian NHEJ, but it also influences HR through a complex regulatory network that may involve crosstalk with ATM, and the regulation of at least 12 proteins involved in HR that are phosphorylated by DNA-PKcs and/or ATM.
基金supported by the Key Research Program of Frontier Sciences,CAS(QYZDY-SSW-JSC024)the Youth Innovation Promotion Association of the CAS(2014165)the National Natural Science Foundation of China(21603223,21473182,91334205,91545104)~~
文摘The AEI cavity of SAPO-18 catalyst was modified with zinc cations with the conventional ion exchange procedure.The cavity modification effectively tunes the product selectivity,and shifts the products from mainly propylene to comparable production of ethylene and propylene in methanol to olefin(MTO)reaction.The incorporation of zinc ions and the generation of bicyclic aromatic species in the AEI cavity of SAPO-18 catalysts introduce additional diffusion hindrance that exert greater influence on the relatively bulky products(e.g.propylene and higher olefins),which increase the selectivity to small-sized products(e.g.ethylene).It appears that the incorporated zinc cations facilitate the generation of lower methylbenzenes which promote the generation of ethylene.The cavity modification via incorporating zinc ions effectively tunes the product selectivity over SAPO molecular sieves with relatively larger cavity,which provides a novel strategy to develop the potential alternative to SAPO-34 catalysts for industrial MTO reaction.
文摘Cerium‐based catalysts are very attractive for the catalytic abatement of nitrogen oxides(NOx)emitted from stationary sources.However,the main challenge is still achieving satisfactory catalytic activity in the low‐temperature range and tolerance to SO2 poisoning.In the present work,two series of Mo‐modified CeO_(2)catalysts were respectively obtained through a wet impregnation method(Mo‐CeO_(2))and a co‐precipitation method(MoCe‐cp),and the roles of the Mo species were systematically investigated.Activity tests showed that the Mo‐CeO_(2)catalyst displayed much higher NO conversion at low temperature and anti‐SO2 ability than MoCe‐cp.The optimal Mo‐CeO_(2)catalyst displayed over 80%NO elimination efficiency even at 150°C and remarkable SO2 resistance at 250°C(nearly no activity loss after 40 h test).The characterization results indicated that the introduced Mo species were highly dispersed on the Mo‐CeO_(2)catalyst surface,thereby providing more Brønsted acid sites and inhibiting the formation of stable adsorbed NOx species.These factors synergistically promote the selective catalytic reduction(SCR)reaction in accordance with the Eley‐Rideal(E‐R)reaction path on the Mo‐CeO_(2)catalyst.Additionally,the molybdenum surface could protect CeO_(2)from SO2 poisoning;thus,the reducibility of the Mo‐CeO_(2)catalyst declined slightly to an adequate level after sulfation.The results in this work indicate that surface modification with Mo species may be a simple method of developing highly efficient cerium‐based SCR catalysts with superior SO2 durability.
文摘The effects of acid surface dissolution on the flotation kinetics of ilmenite(IL)and its common accompanied gangue minerals including olivine-pyroxene(Ol-Px),tremolite-clinochlore(Tr-Cch)and quartz were investigated.The results show that through the surface dissolution the adsorption rate constant for ilmenite increases from 5.272 to 8.441 mol/(g·min)while it decreases for Ol-Px,Tr-Cch and quartz from 6.332,7.309 and 7.774 mol/(g·min)to 5.034,6.223 and 7.371 mol/(g·min),respectively.Also,the flotation experiments on a binary mixture of minerals indicate that after surface dissolution the values of modified rate constant for ilmenite flotation from Ol-Px,Tr-Cch and quartz are enhanced from 36.15,36.52 and 47.86 min-1 to 41.72,45.78 and 56.24 min-1,respectively.This results in the improvement of kinetic selectivity index(SI)in the separation of treated ilmenite from gangue minerals.As evidenced by ICP-MS analysis,the decrease of kinetic parameters for gangue minerals can be due to the removal of Fe^2+,Ca^2+and Mg^2+ions from their surfaces,which results in the lack of enough active sites to interact with collector species.As confirmed by contact angle measurements,this prevents the formation of a stable hydrophobic layer on the minerals surfaces for creating stable attachments between minerals and bubbles.Generally,the improvement of ilmenite flotation kinetics has a negative correlation with the iron content in its accompanied gangue minerals.
文摘In view of the hidden perils concerning building safety in the design, material selection, and construction during current building fitment, the authors have analyzed the influence of main-body safety, fitment components safety, the connection between fitment component and main body, and structural safety upon building safety during building fitment. Environmental safety relating to fitment construction, and choice and use of fitment materials should be taken into consideration during building fitment. The authors have proposed a series of measures to solve the impact of building fitment upon building safety.
文摘The high-temperature(HT) and low-temperature(LT) hydrothermal stabilities of molecular-sieve-based catalysts are important for the selective catalytic reduction of NOx with ammonia(NH3-SCR). In this paper, we report a catalyst, Cu2+ loading SAPO-17, synthesized using cyclohexylamine(CHA), which is commercially available and inexpensive and is utilized in NH3-SCR reduction for the first time. After systematic investigations on the optimization of Si and Cu2+ contents, it was concluded that Cu-SAPO-17-8.0%-0.22 displays favorable catalytic performance, even after being heated at 353 K for 24 h and at 973 K for 16 h. Moreover, the locations of CHAs, host–guest interaction and the Bronsted acid sites were explored by Rietveld refinement against powder X-ray diffraction data of as-made SAPO-17-8.0%. The refinement results showed that two CHAs exist within one eri cage and that the protonated CHA forms a hydrogen bond with O4, which indicates that the proton bonding with O4 will form the Bronsted acid site after the calcination.
基金Project supported by the National Natural Science Foundation of China(No.51775506)the Zhejiang Provincial Natural Science Foundation of China(No.LY18E050022)+2 种基金the Public Welfare Technology Application Research Project of Zhejiang Province(Nos.LGG19E050022 and 2017C33115)the Zhejiang Provincial Science&Technology Project for Medicine&Health(No.2018KY878)the Open Foundation of Zhejiang Provincial Top Key Discipline of Mechanical Engineering of Hangzhou Dianzi University,China
文摘In maxillofacial surgery, there is a significant need for the design and fabrication of porous scaffolds with customizable bionic structures and mechanical properties suitable for bone tissue engineering. In this paper, we characterize the porous Ti6Al4V implant, which is one of the most promising and attractive biomedical applications due to the similarity of its modulus to human bones. We describe the mechanical properties of this implant, which we suggest is capable of providing important biological functions for bone tissue regeneration. We characterize a novel bionic design and fabrication process for porous implants. A design concept of “reducing dimensions and designing layer by layer” was used to construct layered slice and rod-connected mesh structure (LSRCMS) implants. Porous LSRCMS implants with different parameters and porosities were fabricated by selective laser melting (SLM). Printed samples were evaluated by microstructure characterization, specific mechanical properties were analyzed by mechanical tests, and finite element analysis was used to digitally calculate the stress characteristics of the LSRCMS under loading forces. Our results show that the samples fabricated by SLM had good structure printing quality with reasonable pore sizes. The porosity, pore size, and strut thickness of manufactured samples ranged from (60.95± 0.27)% to (81.23±0.32)%,(480±28) to (685±31)μm, and (263±28) to (265±28)μm, respectively. The compression results show that the Young’s modulus and the yield strength ranged from (2.23±0.03) to (6.36±0.06) GPa and (21.36±0.42) to (122.85±3.85) MPa, respectively. We also show that the Young’s modulus and yield strength of the LSRCMS samples can be predicted by the Gibson-Ashby model. Further, we prove the structural stability of our novel design by finite element analysis. Our results illustrate that our novel SLM-fabricated porous Ti6Al4V scaffolds based on an LSRCMS are a promising material for bone implants, and are potentially applicable to the field of bone defect repair.
文摘When incompletely isolated taxa coexist in a patchy environment (e.g. mosaic hybrid zones, host-race complexes), patterns of variation may differ between selected traits/genes and neutral markers. While the genetic structure of selected traits/loci tends to coincide with habitat variables (producing Genetic-Environment Association or GEA), genetic differentiation at neutral loci unlinked to any selected locus rather depends on geographic connectivity at a large scale (e.g. Isolation- By-Distance or IBD), although these loci often display GEA at a small scale. This discrepancy has been repeatedly taken as evi- dence for parallel primary divergence driven by local adaptation. We argue that this interpretation needs to be addressed more thoroughly by considering the alternative hypothesis that speciation was initiated in allopatry and secondary introgression has subsequently erased the signal of past differentiation at neutral loci. We present a model of neutral introgression after secondary contact in a mosaic hybrid zone, which describes how GEAs dissipate with time and how neutral variation self-organizes accord- ing to the environmental and geographic structures. We show that although neutral loci can be affected by environmental selection they are often more affected by history and connectivity: the neutral structure retains the initial geographic separation more than it correlates with the environment during the colonization and introgression phases, and then converges to a migration-drift balance, the most frequent outcome of which is GEA at a local scale but IBD at a large scale. This is the exact pattern usually attributed to parallel ecological speciation. Introgression is heterogeneous in space and depends on the landscape structure (e.g. it is faster in small patches, which are more impacted by immigration). Furthermore, there is no directionality in the association and it is possi- ble to observe reversed GEAs between distant regions. We argue that the history of differentiation should ideally be reconstructed with selected loci or neutral loci linked to them, not neutral ones, and review some case studies for which the hypothesis of a long co-existence of co-adapted genetic backgrounds might have been refuted too hastily [Current Zoology 59 (1): 72-86, 2013].