To revise stratified web ontology language(OWL)ontologies,the kernel revision operator is extended by defining novel conflict stratification and the incision function based on integer linear programming(ILP).The ILP-b...To revise stratified web ontology language(OWL)ontologies,the kernel revision operator is extended by defining novel conflict stratification and the incision function based on integer linear programming(ILP).The ILP-based model considers an optimization problem of minimizing a linear objective function which is suitable for selecting the minimal number of axioms to remove when revising ontologies.Based on the incision function,a revision algorithm is proposed to apply ILP to all minimal incoherence-preserving subsets(MIPS).Although this algorithm can often find a minimal number of axioms to remove,it is very time-consuming to compute MIPS.Thus,an adapted revision algorithm to deal with unsatisfiable concepts individually is also given.Experimental results reveal that the proposed ILP-based revision algorithm is much more efficient than the commonly used algorithm based on the hitting set tree.In addition,the adapted algorithm can achieve higher efficiency,while it may delete more axioms.展开更多
基金The National Natural Science Foundation of China(No.61602259,U1736204)Research Foundation for Advanced Talents of Nanjing University of Posts and Telecommunications(No.NY216022)the National Key Research and Development Program of China(No.2018YFC0830200).
文摘To revise stratified web ontology language(OWL)ontologies,the kernel revision operator is extended by defining novel conflict stratification and the incision function based on integer linear programming(ILP).The ILP-based model considers an optimization problem of minimizing a linear objective function which is suitable for selecting the minimal number of axioms to remove when revising ontologies.Based on the incision function,a revision algorithm is proposed to apply ILP to all minimal incoherence-preserving subsets(MIPS).Although this algorithm can often find a minimal number of axioms to remove,it is very time-consuming to compute MIPS.Thus,an adapted revision algorithm to deal with unsatisfiable concepts individually is also given.Experimental results reveal that the proposed ILP-based revision algorithm is much more efficient than the commonly used algorithm based on the hitting set tree.In addition,the adapted algorithm can achieve higher efficiency,while it may delete more axioms.