Based on the finite element (FE) program ANSYS, a three-dimensional model for the Runyang Suspension Bridge (RSB) is established. The structural natural frequency, vibration mode, stress and displacement response ...Based on the finite element (FE) program ANSYS, a three-dimensional model for the Runyang Suspension Bridge (RSB) is established. The structural natural frequency, vibration mode, stress and displacement response under various load cases are given. A new method of FE model updating is presented based on the physical meaning of sensitivity and the penalty function concept. In this method, the structural model is updated by modifying the parameters of design, and validated by structural natural vibration characteristics, stress response as well as displacement response. The design parameters used for updating are bounded according to measured static response and engineering judgment. The FE model of RSB is updated and validated by the measurements coming from the structural health monitoring system (SHMS), and the FE baseline model reflecting the current state of RSB is achieved. Both the dynamic and static results show that the method is effective in updating the FE model of long span suspension bridges. The results obtained provide an important research basis for damage alarming and health monitoring of the RSB.展开更多
Isotropic consolidation test and consolidated-undrained triaxial test were first undertaken to obtain the parameters of the modified cam-clay(MCC)model and the behavior of natural clayey soil.Then,for the first time,n...Isotropic consolidation test and consolidated-undrained triaxial test were first undertaken to obtain the parameters of the modified cam-clay(MCC)model and the behavior of natural clayey soil.Then,for the first time,numerical simulation of the two tests was performed by three-dimensional finite element method(FEM)using ABAQUS program.The consolidated-drained triaxial test was also simulated by FEM and compared with theoretical results of MCC model.Especially,the behaviors of MCC model during unloading and reloading were analyzed in detail by FEM.The analysis and comparison indicate that the MCC model is able to accurately describe many features of the mechanical behavior of the soil in isotropic consolidation test and consolidated-drained triaxial test.And the MCC model can well describe the variation of excess pore water pressure with the development of axial strain in consolidated-undrained triaxial test,but its ability to predict the relationship between axial strain and shear stress is relatively poor.The comparison also shows that FEM solutions of the MCC model are basically identical to the theoretical ones.In addition,Mandel-Cryer effect unable to be discovered by the conventional triaxial test in laboratories was disclosed by FEM.The analysis of unloading-reloading by FEM demonstrates that the MCC model disobeys the law of energy conservation under the cyclic loading condition if the elastic shear modulus is linearly pressure-dependent.展开更多
This paper deals with new and innovative case studies of application of post-tensioning for restoration of structures for buildings, bridges and rock stabilization in India. In earlier situations for these types of ca...This paper deals with new and innovative case studies of application of post-tensioning for restoration of structures for buildings, bridges and rock stabilization in India. In earlier situations for these types of cases conventional method of repair and rehabilitation has been used. These innovative approaches for restoration have led to enormous saving of cost and time. The advantages of post tensioning are well known in the civil industry and are being used for the last 40 to 50 years. Post tensioning is one of the best methods to induce stresses in the concrete before application of live load and this technique can also be widely used for restoration and rehabilitation of structures. Unlike the use of post-tensioning in new structures there are no definite methods or codes for application in restoration and rehabilitation of structures. For restoration and rehabilitation of structures, PT (post tensioned) technique can be applied in combination with other techniques and materials available. Bridge lifting is a tricky and risky job especially when the superstructure is displaced appreciably by a natural calamity, etc.. Not only the present state of structure needs proper study before commencement of restoration and rehabilitation but also calls for careful execution. This paper deals with case studies of innovative applications of post tensioning in restoration and rehabilitation of structures and restoration of bridge structure in Andaman & Nicobar Island, India affected by Sumatra quake.展开更多
The present work consists of dynamic detection of damages in reinforced concrete bridges by using a MMUM (mathematical model updating method) from incomplete test data. A well suited finite element model of a repair...The present work consists of dynamic detection of damages in reinforced concrete bridges by using a MMUM (mathematical model updating method) from incomplete test data. A well suited finite element model of a repaired bridge is carried out. The diagnosis enables us to locate and detect the damage in a reinforced concrete bridge. Thus, developments of analytical predictions have been checked by modal testing techniques. Besides, the FTCS (finite time centered space) scheme is developed to solve the set of equations which can easily handle finite element matrices of a bridge model. It is shown in this study that the method is applied to detect damages as well as existing cracks in real time of a repaired bridge. To check the efficiency of the method, the repaired bridge of OuedOumazer in Algeria has been selected. It is proven that identification methods have been able to detect the exact location of damage areas to be corrected avoiding the inaccuracy from the finite element model for the mass, stiffness and loading.展开更多
A unified nonlinear strength criterion(i.e UNS criterion) is proposed,for the sake of versatility,to capture the complex strength behaviors of frictional materials in geotechnical field.It covers wide ranges on the me...A unified nonlinear strength criterion(i.e UNS criterion) is proposed,for the sake of versatility,to capture the complex strength behaviors of frictional materials in geotechnical field.It covers wide ranges on the meridian and octahedral planes to describe nonlinear strength behaviors of soils.The Modified Cam-Clay model,incorporating the unified nonlinear strength criterion,is employed as an example to derive working mathematical equations and to illustrate yielding surfaces in three-dimensional stress space for improving the model's predictive capability.The unified nonlinear strength criterion,demonstrated here,is capable of capturing the experimental results of different types of soils on the meridian and octahedral planes.In addition,the revised model,based on this unified nonlinear strength criterion,though very simple,is versatile to predict the true triaxial test results from literature when considering the influences of the intermediate principal stress on strength and deformation under complex stress conditions.展开更多
A timely and accurate damage identification for bridge structures is essential to prevent sudden failures/collapses and other catastrophic accidents.Based on response surface model(RSM)updating and element modal strai...A timely and accurate damage identification for bridge structures is essential to prevent sudden failures/collapses and other catastrophic accidents.Based on response surface model(RSM)updating and element modal strain energy(EMSE)damage index,this paper proposes a novel damage identification method for girder bridge structures.The effectiveness of the proposed damage identification method is investigated using experiments on four simply supported steel beams.With Xiabaishi Bridge,a prestressed continuous rigid frame bridge with large span,as the engineering background,the proposed damage identification method is validated by using numerical simulation to generate different bearing damage scenarios.Finally,the efficiency of the method is justified by considering its application to identifying cracking damage for a real continuous beam bridge called Xinyihe Bridge.It is concluded that the EMSE damage index is sensitive to the cracking damage and the bearing damage.The locations and levels of multiple cracking damages and bearing damages can be also identified.The results illuminate a great potential of the proposed method in identifying damages of real bridge structures.展开更多
Conventional PCC pile technique has been widely used as embankment piles for highway construction in China. To further improve the PCC pile capacity, the expansive concrete technique has been applied to the PCC pile t...Conventional PCC pile technique has been widely used as embankment piles for highway construction in China. To further improve the PCC pile capacity, the expansive concrete technique has been applied to the PCC pile to replace the normal concrete recently. The use of expansive concrete for the PCC pile could increase the pile diameter as well as the contact pressure at the pile-soil interface due to the expansion process of concrete, which allows the improved PCC pile to provide higher capacity than the conventional PCC pile. This paper presents a theoretical model for the new improved PCC pile using expansive concrete technique. The model is formulated by assuming the PCC pile installation process as large strain undrained cylindrical cavity expansion and the subsequent pile shaft expansion combined with soil consolidation process is simulated by the small strain cylindrical cavity expansion combined with strain-controlled consolidation. Then, similarity solution technique is used to solve the problem of cavity expansion in modified cam Clay (MCC) model, while the strain-controlled consolidation is calculated through the finite difference method (FDM). Subsequently, the suitability of the cavity expansion solution in the interpretation of the PCC pile installation is verified by comparing the calculated excess pore pressure with the measured value in an instrumented field test. The stress changes and excess pore pressure during the PCC pile installation and subsequent pile shaft expansion are investigated by means of parametric study. The proposed theoretical model first reveals and quantifies the fundamental mechanism of the PCC pile using expansive concrete technique and it provides a theoretical basis for developing design methods of the new improved PCC pile in the future.展开更多
文摘Based on the finite element (FE) program ANSYS, a three-dimensional model for the Runyang Suspension Bridge (RSB) is established. The structural natural frequency, vibration mode, stress and displacement response under various load cases are given. A new method of FE model updating is presented based on the physical meaning of sensitivity and the penalty function concept. In this method, the structural model is updated by modifying the parameters of design, and validated by structural natural vibration characteristics, stress response as well as displacement response. The design parameters used for updating are bounded according to measured static response and engineering judgment. The FE model of RSB is updated and validated by the measurements coming from the structural health monitoring system (SHMS), and the FE baseline model reflecting the current state of RSB is achieved. Both the dynamic and static results show that the method is effective in updating the FE model of long span suspension bridges. The results obtained provide an important research basis for damage alarming and health monitoring of the RSB.
基金Project(2011J01308) supported by the Natural Science Foundation of Fujian Province,China
文摘Isotropic consolidation test and consolidated-undrained triaxial test were first undertaken to obtain the parameters of the modified cam-clay(MCC)model and the behavior of natural clayey soil.Then,for the first time,numerical simulation of the two tests was performed by three-dimensional finite element method(FEM)using ABAQUS program.The consolidated-drained triaxial test was also simulated by FEM and compared with theoretical results of MCC model.Especially,the behaviors of MCC model during unloading and reloading were analyzed in detail by FEM.The analysis and comparison indicate that the MCC model is able to accurately describe many features of the mechanical behavior of the soil in isotropic consolidation test and consolidated-drained triaxial test.And the MCC model can well describe the variation of excess pore water pressure with the development of axial strain in consolidated-undrained triaxial test,but its ability to predict the relationship between axial strain and shear stress is relatively poor.The comparison also shows that FEM solutions of the MCC model are basically identical to the theoretical ones.In addition,Mandel-Cryer effect unable to be discovered by the conventional triaxial test in laboratories was disclosed by FEM.The analysis of unloading-reloading by FEM demonstrates that the MCC model disobeys the law of energy conservation under the cyclic loading condition if the elastic shear modulus is linearly pressure-dependent.
文摘This paper deals with new and innovative case studies of application of post-tensioning for restoration of structures for buildings, bridges and rock stabilization in India. In earlier situations for these types of cases conventional method of repair and rehabilitation has been used. These innovative approaches for restoration have led to enormous saving of cost and time. The advantages of post tensioning are well known in the civil industry and are being used for the last 40 to 50 years. Post tensioning is one of the best methods to induce stresses in the concrete before application of live load and this technique can also be widely used for restoration and rehabilitation of structures. Unlike the use of post-tensioning in new structures there are no definite methods or codes for application in restoration and rehabilitation of structures. For restoration and rehabilitation of structures, PT (post tensioned) technique can be applied in combination with other techniques and materials available. Bridge lifting is a tricky and risky job especially when the superstructure is displaced appreciably by a natural calamity, etc.. Not only the present state of structure needs proper study before commencement of restoration and rehabilitation but also calls for careful execution. This paper deals with case studies of innovative applications of post tensioning in restoration and rehabilitation of structures and restoration of bridge structure in Andaman & Nicobar Island, India affected by Sumatra quake.
文摘The present work consists of dynamic detection of damages in reinforced concrete bridges by using a MMUM (mathematical model updating method) from incomplete test data. A well suited finite element model of a repaired bridge is carried out. The diagnosis enables us to locate and detect the damage in a reinforced concrete bridge. Thus, developments of analytical predictions have been checked by modal testing techniques. Besides, the FTCS (finite time centered space) scheme is developed to solve the set of equations which can easily handle finite element matrices of a bridge model. It is shown in this study that the method is applied to detect damages as well as existing cracks in real time of a repaired bridge. To check the efficiency of the method, the repaired bridge of OuedOumazer in Algeria has been selected. It is proven that identification methods have been able to detect the exact location of damage areas to be corrected avoiding the inaccuracy from the finite element model for the mass, stiffness and loading.
基金supported by the National Natural Science Foundation of China for Distinguished Young Scholar (Grant No. 50825901)the Public Service Sector R&D Project of Ministry of Water Resource of China (Grant No. 200801014)+1 种基金Scientific Innovation Research Scheme for Jiangsu University Graduate (Grant No. CX10B_207Z)Jiangsu Civil Engineering Graduate Center for Innovation and Academic Communication Foundation
文摘A unified nonlinear strength criterion(i.e UNS criterion) is proposed,for the sake of versatility,to capture the complex strength behaviors of frictional materials in geotechnical field.It covers wide ranges on the meridian and octahedral planes to describe nonlinear strength behaviors of soils.The Modified Cam-Clay model,incorporating the unified nonlinear strength criterion,is employed as an example to derive working mathematical equations and to illustrate yielding surfaces in three-dimensional stress space for improving the model's predictive capability.The unified nonlinear strength criterion,demonstrated here,is capable of capturing the experimental results of different types of soils on the meridian and octahedral planes.In addition,the revised model,based on this unified nonlinear strength criterion,though very simple,is versatile to predict the true triaxial test results from literature when considering the influences of the intermediate principal stress on strength and deformation under complex stress conditions.
基金The National Natural Science Foundation of China(Grant Nos.51178101 and 51378112)The University Graduate Student Scientific Research Innovation Plan of Jiangsu Province(Grant No.CXZZ13_0109)China Scholarship Council under Program for Graduate Student Overseas Study Scholarship
文摘A timely and accurate damage identification for bridge structures is essential to prevent sudden failures/collapses and other catastrophic accidents.Based on response surface model(RSM)updating and element modal strain energy(EMSE)damage index,this paper proposes a novel damage identification method for girder bridge structures.The effectiveness of the proposed damage identification method is investigated using experiments on four simply supported steel beams.With Xiabaishi Bridge,a prestressed continuous rigid frame bridge with large span,as the engineering background,the proposed damage identification method is validated by using numerical simulation to generate different bearing damage scenarios.Finally,the efficiency of the method is justified by considering its application to identifying cracking damage for a real continuous beam bridge called Xinyihe Bridge.It is concluded that the EMSE damage index is sensitive to the cracking damage and the bearing damage.The locations and levels of multiple cracking damages and bearing damages can be also identified.The results illuminate a great potential of the proposed method in identifying damages of real bridge structures.
基金supported by the National Natural Science Foundation of China(Grant No.51420105013)
文摘Conventional PCC pile technique has been widely used as embankment piles for highway construction in China. To further improve the PCC pile capacity, the expansive concrete technique has been applied to the PCC pile to replace the normal concrete recently. The use of expansive concrete for the PCC pile could increase the pile diameter as well as the contact pressure at the pile-soil interface due to the expansion process of concrete, which allows the improved PCC pile to provide higher capacity than the conventional PCC pile. This paper presents a theoretical model for the new improved PCC pile using expansive concrete technique. The model is formulated by assuming the PCC pile installation process as large strain undrained cylindrical cavity expansion and the subsequent pile shaft expansion combined with soil consolidation process is simulated by the small strain cylindrical cavity expansion combined with strain-controlled consolidation. Then, similarity solution technique is used to solve the problem of cavity expansion in modified cam Clay (MCC) model, while the strain-controlled consolidation is calculated through the finite difference method (FDM). Subsequently, the suitability of the cavity expansion solution in the interpretation of the PCC pile installation is verified by comparing the calculated excess pore pressure with the measured value in an instrumented field test. The stress changes and excess pore pressure during the PCC pile installation and subsequent pile shaft expansion are investigated by means of parametric study. The proposed theoretical model first reveals and quantifies the fundamental mechanism of the PCC pile using expansive concrete technique and it provides a theoretical basis for developing design methods of the new improved PCC pile in the future.