为满足日益扩大的复杂互联电网的暂态仿真需求,讨论一种基于自适应修正牛顿(Shamanskii)算法和非诚实牛顿法(very dishonest Newton method,VDHN)的可变步长暂态稳定仿真组合算法。本算法在微分代数方程组联立求解框架下,首先根据隐式...为满足日益扩大的复杂互联电网的暂态仿真需求,讨论一种基于自适应修正牛顿(Shamanskii)算法和非诚实牛顿法(very dishonest Newton method,VDHN)的可变步长暂态稳定仿真组合算法。本算法在微分代数方程组联立求解框架下,首先根据隐式梯形积分局部截断误差理论,对步长进行控制,在保证精度的条件下,减少了积分步数;其次,在每时步非线性方程组迭代求解中,考虑牛顿类算法的收敛性,引入Shamanskii算法,自适应控制雅可比矩阵的更新,并进一步应用VDHN法对迭代过程中电压向量的计算进行简化。针对多组算例进行测试,讨论该算法的有效性及局限性。计算结果表明:该算法可适应不同规模算例,在故障较严重情况下,仍可较好地提升仿真效率。展开更多
文摘为满足日益扩大的复杂互联电网的暂态仿真需求,讨论一种基于自适应修正牛顿(Shamanskii)算法和非诚实牛顿法(very dishonest Newton method,VDHN)的可变步长暂态稳定仿真组合算法。本算法在微分代数方程组联立求解框架下,首先根据隐式梯形积分局部截断误差理论,对步长进行控制,在保证精度的条件下,减少了积分步数;其次,在每时步非线性方程组迭代求解中,考虑牛顿类算法的收敛性,引入Shamanskii算法,自适应控制雅可比矩阵的更新,并进一步应用VDHN法对迭代过程中电压向量的计算进行简化。针对多组算例进行测试,讨论该算法的有效性及局限性。计算结果表明:该算法可适应不同规模算例,在故障较严重情况下,仍可较好地提升仿真效率。