期刊文献+
共找到148篇文章
< 1 2 8 >
每页显示 20 50 100
修正的Bernstein-Durrmeyer算子在Orlicz空间的逼近 被引量:1
1
作者 陶佳玲 孙渭滨 《重庆理工大学学报(自然科学)》 CAS 2010年第6期112-115,共4页
研究了修正的Bernstein-Durrmeyer算子在Orlicz空间的逼近估计,得到了其在Orlicz空间逼近的正定理.
关键词 修正的bernstein-durrmeyer算子 ORLICZ空间 逼近
下载PDF
修正的Bernstein-Durrmeyer算子的若干保持性质
2
作者 马月梅 《石家庄学院学报》 2005年第3期14-16,共3页
修正的Bernstein-Durrmeyer算子既具有一些与Bernstein算子相似的性质,同时也具有Bernstein-Durrmeyer算子的一些性质.研究了修正的Bernstein-Durrmeyer算子的特性,得到相应原函数的单调性、凸性、Hw类的保持性质.所得结果类似于所对应... 修正的Bernstein-Durrmeyer算子既具有一些与Bernstein算子相似的性质,同时也具有Bernstein-Durrmeyer算子的一些性质.研究了修正的Bernstein-Durrmeyer算子的特性,得到相应原函数的单调性、凸性、Hw类的保持性质.所得结果类似于所对应的Bernstein算子的结果. 展开更多
关键词 bernstein-durrmeyer算子 单调性 凸性 H^n类 保持性质
下载PDF
修正q-Szász-Kantorovich算子在紧圆盘的复逼近(q>1)
3
作者 闫丽新 韩领兄 《数学杂志》 2024年第3期247-258,共12页
本文给出了修正q-Szász-Kantorovich算子在复空间的定义,参照Gal S G等人在文献[10]的方法,研究了当q>1时修正q-Szász-Kantorovich算子在紧圆盘对解析函数的逼近性质,获得了Voronovskaja结果,并给出其精确估计,丰富了修正q... 本文给出了修正q-Szász-Kantorovich算子在复空间的定义,参照Gal S G等人在文献[10]的方法,研究了当q>1时修正q-Szász-Kantorovich算子在紧圆盘对解析函数的逼近性质,获得了Voronovskaja结果,并给出其精确估计,丰富了修正q-Szász-Kantorovich算子在复空间的逼近性质. 展开更多
关键词 修正q-Szász-Kantorovich算子 逼近性质 Voronovskaja型结果
下载PDF
修正本征Bernstein-Durrmeyer型算子的逼近
4
作者 张斌 虞旦盛 《杭州师范大学学报(自然科学版)》 CAS 2022年第4期424-432,共9页
引入了一种与端点处函数值无关的新的修正本征Bernstein-Durrmeyer型算子U*n(f,x),并建立了U*n(f,x)对连续函数逼近的正定理和Voronovaskaja型估计.
关键词 Voronovaskaja型估计 正定理 bernstein-durrmeyer算子
下载PDF
Bernstein-Durrmeyer算子线性组合的点态逼近定理 被引量:1
5
作者 郭顺生 刘喜武 李翠香 《数学年刊(A辑)》 CSCD 北大核心 2001年第3期297-306,共10页
本文利用点态光滑模Bernstein-Durrmeyer算子的r阶级性组合的逼近进行了研究,统一了已有的关于古典光滑模和Ditzian-Totik 模的结果.
关键词 bernstein-durrmeyer算子 线性组合 点态光滑模 逼近定理 Ditzion-Totik模
下载PDF
Bernstein-Durrmeyer算子拟中插式在Orlicz空间中的逼近 被引量:2
6
作者 韩领兄 吴嘎日迪 高会双 《数学杂志》 北大核心 2017年第3期488-496,共9页
本文在Orlicz空间中研究了Bernstein-Durrmeyer算子拟中插式B_n^(2r-1)(f,x)逼近性质.利用2r阶Ditzian-Totik模与K-泛函的等价性,Jensen不等式,H?lder不等式,Berens-Lorentz引理得到了逼近的正,逆和等价定理,从而推广了Bernstein-Durrme... 本文在Orlicz空间中研究了Bernstein-Durrmeyer算子拟中插式B_n^(2r-1)(f,x)逼近性质.利用2r阶Ditzian-Totik模与K-泛函的等价性,Jensen不等式,H?lder不等式,Berens-Lorentz引理得到了逼近的正,逆和等价定理,从而推广了Bernstein-Durrmeyer算子拟中插式B_n^(2r-1)(f,x)在L_P空间的逼近结果. 展开更多
关键词 bernstein-durrmeyer算子 DITZIAN-TOTIK模 正逆定理 ORLICZ空间
下载PDF
多元Bernstein-Durrmeyer算子L^p逼近的Steckin-Marchaud型不等式 被引量:2
7
作者 曹飞龙 熊静宜 《数学年刊(A辑)》 CSCD 北大核心 2001年第2期151-156,共6页
本文给出多元 Bernstein-Durrmeyer算子 LP逼近的 Steckin-Marchaud型不等式,从该不等式得到多元Bernstein-Durrmeyer算子Lp对逼近的特征刻划定理.
关键词 bernstein-durrmeyer算子 L^P逼近 Steckin-Marchand型不等式 Lebesgue可积函数空间 Riesz插值定理
下载PDF
Bernstein-Durrmeyer算子在Orlicz空间的逼近 被引量:1
8
作者 刘国军 薛银川 《宁夏大学学报(自然科学版)》 CAS 2004年第2期127-129,共3页
在Orlicz空间L M[0 ,1] 内 ,利用r阶光滑模 ,讨论Bernstein Durrmeyer算子的逼近性质 ,得到了逼近的正定理和饱和定理 .同时 。
关键词 bernstein-durrmeyer算子 ORLICZ空间 正定理 饱和
下载PDF
带Jacobi权Bernstein-Durrmeyer算子在权L_p^w中的逼近 被引量:1
9
作者 梁永顺 《宝鸡文理学院学报(自然科学版)》 CAS 2003年第3期176-181,共6页
讨论了带Jacobi权的Bernstein-Durrmeyer算子在权空间L_p^w(1≤p<∞)中的逼近问题,并与相应的K-泛函和光滑模建立了等价关系。
关键词 bernstein-durrmeyer算子 JACOBI权 权空间 Lp^w逼近
下载PDF
Bernstein-Durrmeyer算子导数的等价刻划 被引量:1
10
作者 丁春梅 《甘肃工业大学学报》 北大核心 2002年第1期110-113,共4页
研究了Bernstein-Durrmeyer算子高阶导数与函数光滑性之间的等价关系,用Ditzian-Totik模刻划该算子点态和整体导数的特征,得到了一个等价刻划定理,所得结果统一了该算子导数的点态和整体两种渐近性态的等价表征.
关键词 bernstein-durrmeyer算子 导数 光滑模 等价刻划 函数光滑性
下载PDF
左Bernstein-Durrmeyer拟插值算子的逼近性质
11
作者 李翠香 苏建勇 郭顺生 《工程数学学报》 CSCD 北大核心 2007年第3期551-554,共4页
通过引进一个新的微分算子,并借助最佳逼近多项式的性质,本文证明了左Bernstein- Durrmeyer拟插值算子逼近的正定理。所得结果改进和发展了相关文献中的结果。
关键词 bernstein-durrmeyer拟插值算子 光滑模 最佳逼近多项式
下载PDF
左拟中插式Bernstein-Durrmeyer算子在Orlicz空间中同时逼近的强逆不等式
12
作者 韩领兄 高会双 《东北师大学报(自然科学版)》 CAS CSCD 北大核心 2018年第3期1-6,共6页
在Orlicz空间中研究了左拟中插式Bernstein-Durrmeyer算子B_n^(2r-1)(f,x)的逼近性质.利用2r阶Ditzian-Totik模与K-泛函的等价性,以及H9lder不等式得到了同时逼近的强逆定理,推广了左拟中插式Bernstein-Durrmeyer算子B_n^(2r-1)(f,x)在L... 在Orlicz空间中研究了左拟中插式Bernstein-Durrmeyer算子B_n^(2r-1)(f,x)的逼近性质.利用2r阶Ditzian-Totik模与K-泛函的等价性,以及H9lder不等式得到了同时逼近的强逆定理,推广了左拟中插式Bernstein-Durrmeyer算子B_n^(2r-1)(f,x)在L_p[0,1]空间的逼近结果. 展开更多
关键词 bernstein-durrmeyer算子 DITZIAN-TOTIK模 K-泛函 ORLICZ空间
下载PDF
B_a空间中的多元加权光滑模与Bernstein-Durrmeyer算子
13
作者 丁春梅 曹飞龙 《数学物理学报(A辑)》 CSCD 北大核心 2005年第5期627-636,共10页
该文引进Ba空间多元加权光滑模,推广Lp空间的Ditzian-Totik模,证明该模与K-泛函的等价性.作为应用,讨论定义在单纯形上多元Bernstein-Durrmeyer算子与多元加权光滑模之间的关系.即,以多元加权光滑模为尺度,建立Bernstein-Durrmeyer算子... 该文引进Ba空间多元加权光滑模,推广Lp空间的Ditzian-Totik模,证明该模与K-泛函的等价性.作为应用,讨论定义在单纯形上多元Bernstein-Durrmeyer算子与多元加权光滑模之间的关系.即,以多元加权光滑模为尺度,建立Bernstein-Durrmeyer算子在Ba空间逼近阶的上界与下界估计. 展开更多
关键词 BA空间 光滑模 单纯形 bernstein-durrmeyer算子
下载PDF
关于Bernstein-Durrmeyer算子的Stechkin-Marchaud型不等式
14
作者 郭顺生 刘丽霞 《应用泛函分析学报》 CSCD 2002年第3期193-198,共6页
主要目的是利用K-泛函来研究Bernstein-Durrmeyer型算子的Stechkin-Marchaud型不等式, 由此不等式,我们推广了B-D算子关于  (f,t)的逆结果.
关键词 bernstein-durrmeyer算子 Stechkin-Marchaud型不等式 光滑模 K-泛函
下载PDF
带立方非线性修正Camassa-Holm方程的初值问题
15
作者 张欣 吴兴龙 《数学物理学报(A辑)》 CSCD 北大核心 2024年第2期376-383,共8页
该文利用Kato半群理论和耗散算子的定义,研究了带立方非线性修正Camassa-Holm方程的初值问题,并在Sobolev空间H^(s,p)(R)(s≥1,p∈(1,∞))中建立了其解的存在唯一性,推广了Fu等在Besov空间B_(p,r)^(s)(R)(p,r≥1,s>max{2+1/p,5/2})... 该文利用Kato半群理论和耗散算子的定义,研究了带立方非线性修正Camassa-Holm方程的初值问题,并在Sobolev空间H^(s,p)(R)(s≥1,p∈(1,∞))中建立了其解的存在唯一性,推广了Fu等在Besov空间B_(p,r)^(s)(R)(p,r≥1,s>max{2+1/p,5/2})中所得到的适定性结果(J Differ Equations,2013,255:1905-1938). 展开更多
关键词 修正Camassa-Holm方程 适定性 耗散算子 Kato半群理论
下载PDF
角形域上一类二维Bernstein-Durrmeyer算子的Lp—逼近
16
作者 宋儒瑛 赵德钧 《绍兴文理学院学报(哲学社会科学版)》 1999年第6期26-29,共4页
本文给出了角形域上一维Bernstein-Durrmeyer算子在p方可积函数空间上的一些逼近性质,并建立了逼近等价定理.
关键词 二维bernstein-durrmeyer算子 K-泛函 光滑模
下载PDF
一类Bernstein-Durrmeyer算子线性组合的局部逼近阶
17
作者 宣培才 《绍兴文理学院学报(哲学社会科学版)》 1998年第6期1-4,共4页
给出了一类Bernstein-Durrneyer算子的线性组合在一致逼近意义下的局部逼近阶.
关键词 bernstein-durrmeyer算子 线性组合 K-泛函 光滑模 局部逼近
下载PDF
移动紧圆盘上Bernstein-Durrmeyer型算子的逼近 被引量:1
18
作者 庞兆鋆 虞旦盛 周平 《数学物理学报(A辑)》 CSCD 北大核心 2020年第3期545-555,共11页
为了逼近移动圆盘上的解析函数,构造了一种新的Bernstein-Durrmeyer型算子,并给出其在移动圆盘上同时逼近的一致逼近速度估计.
关键词 bernstein-durrmeyer算子 可移动紧圆盘 逼近估计
下载PDF
二元Bernstein-Durrmeyer算子在Orlicz空间中的逼近定理 被引量:2
19
作者 宋文华 吴嘎日迪 《大学数学》 2022年第3期21-28,共8页
研究了二元Bernstein-Durrmeyer算子在Orlicz空间中的逼近性质,应用Jensen不等式和Höder不等式,以及定义在Orlicz空间中的K-泛函,推出了其在Orlicz空间中逼近正定理和逆定理.
关键词 二元bernstein-durrmeyer算子 收敛性 K-泛函 ORLICZ空间
下载PDF
基于双参数的修正Bernstein-Kantorovich算子的逼近性质
20
作者 刘玉洁 程文韬 +1 位作者 张夏彧 何勰 《新乡学院学报》 2023年第9期21-25,共5页
通过引入参数定义了一种广义的Bernstein-Kantorovich算子,研究了它的一些近似性质,导出了新算子的Voronovskaya型定理,利用光滑模和Peetre’-K泛函估计了该算子的收敛速度。结果表明,新算子具有良好的近似性质。
关键词 修正的Bernstein-Kantorovich算子 光滑模 Voronovskaya定理 收敛速度
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部