Through modifying the CPN model, a kind of multivariable fuzzy model is put forward, and the matching fuzzy multistep predictive control algorithm is deduced based on the model. The modified model works in a competiti...Through modifying the CPN model, a kind of multivariable fuzzy model is put forward, and the matching fuzzy multistep predictive control algorithm is deduced based on the model. The modified model works in a competitive output manner which results in its local representation property. While studying on line, only a few parameters need to be regulated. So the model has the merits of fast learning and on line self organizing modeling. The control algorithm is simple, adaptive and useful in multivariable and time delay systems. Applying the algorithm in a paper making system, simulation shows its good effect.展开更多
Short-term forecasting is a difficult problem because of the influence of non-linear factors and irregular events.A novel short-term forecasting method named TIK was proposed,in which ARMA forecasting model was used t...Short-term forecasting is a difficult problem because of the influence of non-linear factors and irregular events.A novel short-term forecasting method named TIK was proposed,in which ARMA forecasting model was used to consider the load time series trend forecasting,intelligence forecasting DESVR model was applied to estimate the non-linear influence,and knowledge mining methods were applied to correct the errors caused by irregular events.In order to prove the effectiveness of the proposed model,an application of the daily maximum load forecasting was evaluated.The experimental results show that the DESVR model improves the mean absolute percentage error(MAPE) from 2.82% to 2.55%,and the knowledge rules can improve the MAPE from 2.55% to 2.30%.Compared with the single ARMA forecasting method and ARMA combined SVR forecasting method,it can be proved that TIK method gains the best performance in short-term load forecasting.展开更多
文摘Through modifying the CPN model, a kind of multivariable fuzzy model is put forward, and the matching fuzzy multistep predictive control algorithm is deduced based on the model. The modified model works in a competitive output manner which results in its local representation property. While studying on line, only a few parameters need to be regulated. So the model has the merits of fast learning and on line self organizing modeling. The control algorithm is simple, adaptive and useful in multivariable and time delay systems. Applying the algorithm in a paper making system, simulation shows its good effect.
基金Projects(70671039,71071052) supported by the National Natural Science Foundation of ChinaProjects(10QX44,09QX68) supported by the Fundamental Research Funds for the Central Universities in China
文摘Short-term forecasting is a difficult problem because of the influence of non-linear factors and irregular events.A novel short-term forecasting method named TIK was proposed,in which ARMA forecasting model was used to consider the load time series trend forecasting,intelligence forecasting DESVR model was applied to estimate the non-linear influence,and knowledge mining methods were applied to correct the errors caused by irregular events.In order to prove the effectiveness of the proposed model,an application of the daily maximum load forecasting was evaluated.The experimental results show that the DESVR model improves the mean absolute percentage error(MAPE) from 2.82% to 2.55%,and the knowledge rules can improve the MAPE from 2.55% to 2.30%.Compared with the single ARMA forecasting method and ARMA combined SVR forecasting method,it can be proved that TIK method gains the best performance in short-term load forecasting.