Following myocardial infarction(MI), cardiomyocytes and infarct size are the focus of our attention when evaluating the extent of cardiac injury, efficacy of therapies or success in repairing the damaged heart by stem...Following myocardial infarction(MI), cardiomyocytes and infarct size are the focus of our attention when evaluating the extent of cardiac injury, efficacy of therapies or success in repairing the damaged heart by stem cell therapy. Numerous interventions have been shown by pre-clinical studies to be effective in limiting infarct size, and yet clinical trials designed accordingly have yielded disappointing outcomes. The ultimate goal of cardiac protection is to limit the adverse cardiac remodeling. Accumulating studies have revealed that post-infarct remodeling can be attenuated without infarct size limitation. To reconcile this, one needs to appreciate the significance of various cellular and acellular myocardial components that, like cardiomyocytes, undergo significant damage and dysfunction, which impact the ultimate cardiac injury and remodelling. Microvascular injury following ischemia-reperfusion may influence infarct size and promote inflammation. Myocardial injury evokes innate immunity with massive inflammatory infiltration that, although essential for the healing process, exacerbates myocardial injury and damage to extracellular matrix leading to dilative remodeling. It is also important to consider the multiple non-cardiomyocyte components in evaluating therapeutic efficacy. Current research indicates the pivotal role of these components in achieving cardiac regeneration by cell therapy. This review summarizes findings in this field, highlights a broad consideration of therapeutic targets,and recommends cardiac remodeling as the ultimate target.展开更多
The adoption of both Nature-based Solutions(NbS)and a system perspective is a hot issue and an area in which there is much room for improvement in ecological protection and restoration.The study takes Altay region as ...The adoption of both Nature-based Solutions(NbS)and a system perspective is a hot issue and an area in which there is much room for improvement in ecological protection and restoration.The study takes Altay region as an example,an area located in Xinjiang,China,which is an important ecological corridor of the national key functional area and the core area of the Belt and Road but has a fragile ecological environment and needs much enhancement in ecological protection and restoration.Guided by the concept of"mountains-rivers-forestsfarmlands-lakes-grasslands(MRFFLG)system is a life community",the coupling relationship of the various MRFFLG elements,the main ecological environmental problems and the integrated countermeasures for protection and restoration in Altay region have been analyzed in this study.The study shows that Altay region has a typical meta-ecosystem of mountain,oasis,and desert,and the connections by rivers and lakes make the ecosystem links within the region much closer.The interweaving of resource-environmental-ecological issues of the aquatic ecosystem,degradation of the quality of terrestrial ecosystems such as forests,grasslands and farmlands,the increased ecosystem fragmentation and ecological risks are the major ecological environmental issues in this region.This study takes the improvement of the ecosystem health and function in Altay region as the core goal of regional ecological protection and restoration.First,we establish a zoning governance pattern from the perspective of ecosystem integrity;second,we design governance strategies for different zones with the goal of synergistic improvements in the ecosystem functions;and finally,we clarify the key engineering tasks in different zones from the perspective of ecosystem services.Ecological conservation and restoration of the MRFFLG system is a prime example of the application and development of NbS in China.This paper constructs an analytical framework for identifying regional life communities,diagnosing ecological protection and restoration of zoning problems,and proposing classified solutions for ecological protection tasks for the protection of the MRFFLG system.This research will enrich the theory and technology for the protection and restoration of MRFFLG systems,and provide guidance for the practice of ecological protection and restoration in Altay region.展开更多
基金supported by the National Health and Medical Research Council of Australia fellowship(ID1043026 to Xiaojun Du)
文摘Following myocardial infarction(MI), cardiomyocytes and infarct size are the focus of our attention when evaluating the extent of cardiac injury, efficacy of therapies or success in repairing the damaged heart by stem cell therapy. Numerous interventions have been shown by pre-clinical studies to be effective in limiting infarct size, and yet clinical trials designed accordingly have yielded disappointing outcomes. The ultimate goal of cardiac protection is to limit the adverse cardiac remodeling. Accumulating studies have revealed that post-infarct remodeling can be attenuated without infarct size limitation. To reconcile this, one needs to appreciate the significance of various cellular and acellular myocardial components that, like cardiomyocytes, undergo significant damage and dysfunction, which impact the ultimate cardiac injury and remodelling. Microvascular injury following ischemia-reperfusion may influence infarct size and promote inflammation. Myocardial injury evokes innate immunity with massive inflammatory infiltration that, although essential for the healing process, exacerbates myocardial injury and damage to extracellular matrix leading to dilative remodeling. It is also important to consider the multiple non-cardiomyocyte components in evaluating therapeutic efficacy. Current research indicates the pivotal role of these components in achieving cardiac regeneration by cell therapy. This review summarizes findings in this field, highlights a broad consideration of therapeutic targets,and recommends cardiac remodeling as the ultimate target.
基金The National Natural Science Foundation of China(41701601,41871196)The Scientific Research Project in Altay Region,Xinjiang Uygur Autonomous Region of China(2019-529)。
文摘The adoption of both Nature-based Solutions(NbS)and a system perspective is a hot issue and an area in which there is much room for improvement in ecological protection and restoration.The study takes Altay region as an example,an area located in Xinjiang,China,which is an important ecological corridor of the national key functional area and the core area of the Belt and Road but has a fragile ecological environment and needs much enhancement in ecological protection and restoration.Guided by the concept of"mountains-rivers-forestsfarmlands-lakes-grasslands(MRFFLG)system is a life community",the coupling relationship of the various MRFFLG elements,the main ecological environmental problems and the integrated countermeasures for protection and restoration in Altay region have been analyzed in this study.The study shows that Altay region has a typical meta-ecosystem of mountain,oasis,and desert,and the connections by rivers and lakes make the ecosystem links within the region much closer.The interweaving of resource-environmental-ecological issues of the aquatic ecosystem,degradation of the quality of terrestrial ecosystems such as forests,grasslands and farmlands,the increased ecosystem fragmentation and ecological risks are the major ecological environmental issues in this region.This study takes the improvement of the ecosystem health and function in Altay region as the core goal of regional ecological protection and restoration.First,we establish a zoning governance pattern from the perspective of ecosystem integrity;second,we design governance strategies for different zones with the goal of synergistic improvements in the ecosystem functions;and finally,we clarify the key engineering tasks in different zones from the perspective of ecosystem services.Ecological conservation and restoration of the MRFFLG system is a prime example of the application and development of NbS in China.This paper constructs an analytical framework for identifying regional life communities,diagnosing ecological protection and restoration of zoning problems,and proposing classified solutions for ecological protection tasks for the protection of the MRFFLG system.This research will enrich the theory and technology for the protection and restoration of MRFFLG systems,and provide guidance for the practice of ecological protection and restoration in Altay region.