A one-step overall strategy from surface to bulk was proposed to simultaneously synthesize the Nb-doped and LiNbO_(3)-coated LiNi_(0.83)Co_(0.12)Mn_(0.05)O_(2) cathode materials.The incorporation of LiNbO_(3) coating ...A one-step overall strategy from surface to bulk was proposed to simultaneously synthesize the Nb-doped and LiNbO_(3)-coated LiNi_(0.83)Co_(0.12)Mn_(0.05)O_(2) cathode materials.The incorporation of LiNbO_(3) coating can regulate the interface and facilitate the diffusion of Li-ions.Simultaneously,the stronger Nb—O bond can effectively suppress Li^(+)/Ni^(2+) cation mixing and strengthen the stability of crystal structure,which helps to mitigate the anisotropic variations of lattice parameters during Li^(+) de/intercalation.The results showed that the dual-modified materials exhibited good structural stability and distinguished electrochemical performance.The optimal NCM-Nb2 sample showed an excellent capacity retention of 90.78%after 100 cycles at 1C rate between 2.7 and 4.3 V,while only 67.90%for the pristine one.Meanwhile,it displayed a superior rate capability of 149.1 mA·h/g at the 10C rate.These results highlight the feasibility of one-step dual modification strategy to synchronously improve the electrochemical performance of Ni-rich layered oxide cathodes.展开更多
Hierarchically porous ZSM‐5 (SiO2/Al2O3 ≈ 120) containing phosphorus was prepared by a one‐step post‐synthesis treatment involving controlled desilication and phosphorous modification. The hierarchically porous ZS...Hierarchically porous ZSM‐5 (SiO2/Al2O3 ≈ 120) containing phosphorus was prepared by a one‐step post‐synthesis treatment involving controlled desilication and phosphorous modification. The hierarchically porous ZSM‐5 featured high thermal and hydrothermal stability. The obtained ZSM‐5zeolites were systematically characterized by X‐ray diffraction, scanning electron microscopy,transmission electron microscopy, N2 adsorption‐desorption, NH3 temperature‐programmed desorption,and 27Al and 31P magic‐angle spinning nuclear magnetic resonance spectroscopy. Theprepared ZSM‐5 displayed enhanced activity and prolonged lifetime toward hydrocarbon cracking.The high activity was attributed to improved coke tolerance owing to the presence of the highlystable mesoporous network of ZSM‐5 and acid sites introduced upon phosphorus modification.Additionally a mechanism of the stabilization of the zeolites by phosphorus was proposed and discussed.展开更多
A methanol-soluble diamine-modified fullerene derivative(denoted as PCBDANI)was applied as an efficient cathode buffer layer(CBL)in planar p-i-n perovskite solar cells(pero-SCs)based on the CH_3NH_3PbI_(3-x)Cl_x absor...A methanol-soluble diamine-modified fullerene derivative(denoted as PCBDANI)was applied as an efficient cathode buffer layer(CBL)in planar p-i-n perovskite solar cells(pero-SCs)based on the CH_3NH_3PbI_(3-x)Cl_x absorber.The device with PCBDANI single CBL exhibited significantly improved performance with a power conversion efficiency(PCE)of 15.45%,which is approximately17%higher than that of the control device without the CBL.The dramatic improvement in PCE can be attributed to the formation of an interfacial dipole at the PCBM/Al interface originating from the amine functional group and the suppression of interfacial recombinationby the PCBDANI interlayer.To further improve the PCE of pero-SCs,PCBDANI/LiF double CBLs were introduced between PCBM and the top Al electrode.An impressive PCE of 15.71%was achieved,which is somewhat higher than that of the devices with LiF or PCBDANI single CBL.Besides the PCE,the long-term stability of the device with PCBDANI/LiF double CBLs is also superior to that of the device with LiF single CBL.展开更多
基金the Regional Innovation and Development Joint Fund of National Natural Science Foundation of China(No.U19A2018)the National Natural Science Foundation of China(No.21703191)+2 种基金Project of Innovation Team of the Ministry of Education,China(No.IRT_17R90)Hunan Provincial Natural Scientific Foundation of China(No.2019JJ50600)Outstanding Youth Project of Hunan Provincial Education Department,China(No.18B076).
文摘A one-step overall strategy from surface to bulk was proposed to simultaneously synthesize the Nb-doped and LiNbO_(3)-coated LiNi_(0.83)Co_(0.12)Mn_(0.05)O_(2) cathode materials.The incorporation of LiNbO_(3) coating can regulate the interface and facilitate the diffusion of Li-ions.Simultaneously,the stronger Nb—O bond can effectively suppress Li^(+)/Ni^(2+) cation mixing and strengthen the stability of crystal structure,which helps to mitigate the anisotropic variations of lattice parameters during Li^(+) de/intercalation.The results showed that the dual-modified materials exhibited good structural stability and distinguished electrochemical performance.The optimal NCM-Nb2 sample showed an excellent capacity retention of 90.78%after 100 cycles at 1C rate between 2.7 and 4.3 V,while only 67.90%for the pristine one.Meanwhile,it displayed a superior rate capability of 149.1 mA·h/g at the 10C rate.These results highlight the feasibility of one-step dual modification strategy to synchronously improve the electrochemical performance of Ni-rich layered oxide cathodes.
基金supported by the National Natural Science Foundation of China (21403070, 21573073)National Key Technology Research and De-velopment Program (2012BAE05B02)Shanghai Leading Academic Discipline Project (B409)~~
文摘Hierarchically porous ZSM‐5 (SiO2/Al2O3 ≈ 120) containing phosphorus was prepared by a one‐step post‐synthesis treatment involving controlled desilication and phosphorous modification. The hierarchically porous ZSM‐5 featured high thermal and hydrothermal stability. The obtained ZSM‐5zeolites were systematically characterized by X‐ray diffraction, scanning electron microscopy,transmission electron microscopy, N2 adsorption‐desorption, NH3 temperature‐programmed desorption,and 27Al and 31P magic‐angle spinning nuclear magnetic resonance spectroscopy. Theprepared ZSM‐5 displayed enhanced activity and prolonged lifetime toward hydrocarbon cracking.The high activity was attributed to improved coke tolerance owing to the presence of the highlystable mesoporous network of ZSM‐5 and acid sites introduced upon phosphorus modification.Additionally a mechanism of the stabilization of the zeolites by phosphorus was proposed and discussed.
基金the National Natural Science Foundation of China(21204054,51303118,91333204)the Natural Science Foundation of Jiangsu Province(BK20130289)+3 种基金the Ph.D.Programs Foundation of Ministry of Education of China(20133201120008)the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Scientific Research Foundation for Returned Scholars,Ministry of Education of ChinaBeijing National Laboratory for Molecular Sciences,State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
文摘A methanol-soluble diamine-modified fullerene derivative(denoted as PCBDANI)was applied as an efficient cathode buffer layer(CBL)in planar p-i-n perovskite solar cells(pero-SCs)based on the CH_3NH_3PbI_(3-x)Cl_x absorber.The device with PCBDANI single CBL exhibited significantly improved performance with a power conversion efficiency(PCE)of 15.45%,which is approximately17%higher than that of the control device without the CBL.The dramatic improvement in PCE can be attributed to the formation of an interfacial dipole at the PCBM/Al interface originating from the amine functional group and the suppression of interfacial recombinationby the PCBDANI interlayer.To further improve the PCE of pero-SCs,PCBDANI/LiF double CBLs were introduced between PCBM and the top Al electrode.An impressive PCE of 15.71%was achieved,which is somewhat higher than that of the devices with LiF or PCBDANI single CBL.Besides the PCE,the long-term stability of the device with PCBDANI/LiF double CBLs is also superior to that of the device with LiF single CBL.