High-temperature(HT, >850℃) metamorphism in continental collision orogens, particularly for those ultrahigh-pressure(UHP) metamorphic rocks, has become one of the remarkable topics in Earth science. It has bearing...High-temperature(HT, >850℃) metamorphism in continental collision orogens, particularly for those ultrahigh-pressure(UHP) metamorphic rocks, has become one of the remarkable topics in Earth science. It has bearing on the element and isotope behaviors of UHP rocks, their partial melting and related geodynamic effects during exhumation. In this paper, five representative continental collision orogens with typical HT/UHP rocks, including the Dabie orogen in China, the Kokchetav in Kazakhstan, the Caledonides in Greenland, the Rhodope in Greece, and the Erzgebirge in Germany are introduced, and their HT/UHP metamorphism and evolution processes are summarized. In addition, metamorphic P-T-t paths, multistage exhumation processes, and partial melting and preservation and retrogression of UHP index minerals during exhumation and their possible mechanisms are discussed. On this basis, the forthcoming key fields and scientific subjects of HT/UHP rocks within continental subduction channel are proposed.展开更多
Continental subduction and collision normally follows oceanic subduction,with the remarkable event of formation and exhumation of high-to ultra-high-pressure(HP-UHP)metamorphic rocks.Based on the summary of numerical ...Continental subduction and collision normally follows oceanic subduction,with the remarkable event of formation and exhumation of high-to ultra-high-pressure(HP-UHP)metamorphic rocks.Based on the summary of numerical geodynamic models,six modes of continental convergence have been identified:pure shear thickening,folding and buckling,one-sided steep subduction,flat subduction,two-sided subduction,and subducting slab break-off.In addition,the exhumation of HP-UHP rocks can be formulated into eight modes:thrust fault exhumation,buckling exhumation,material circulation,overpressure model,exhumation of a coherent crustal slice,episodic ductile extrusion,slab break-off induced eduction,and exhumation through fractured overriding lithosphere.During the transition from subduction to exhumation,the weakening and detachment of subducted continental crust are prerequisites.However,the dominant weakening mechanisms and their roles in the subduction channel are poorly constrained.To a first degree approximation,the mechanism of continental subduction and exhumation can be treated as a subduction channel flow model,which incorporates the competing effects of downward Couette(subduction)flow and upward Poiseuille(exhumation)flow in the subduction channel.However,the(de-)hydration effect plays significant roles in the deformation of subduction channel and overriding lithosphere,which thereby result in very different modes from the simple subduction channel flow.Three-dimensionality is another important issue with highlighting the along-strike differential modes of continental subduction,collision and exhumation in the same continental convergence belt.展开更多
基金supported by the National Basic Research Program of China(Grant No.2015CB856104)the National Natural Science Foundation of China(Grant No.41273036)
文摘High-temperature(HT, >850℃) metamorphism in continental collision orogens, particularly for those ultrahigh-pressure(UHP) metamorphic rocks, has become one of the remarkable topics in Earth science. It has bearing on the element and isotope behaviors of UHP rocks, their partial melting and related geodynamic effects during exhumation. In this paper, five representative continental collision orogens with typical HT/UHP rocks, including the Dabie orogen in China, the Kokchetav in Kazakhstan, the Caledonides in Greenland, the Rhodope in Greece, and the Erzgebirge in Germany are introduced, and their HT/UHP metamorphism and evolution processes are summarized. In addition, metamorphic P-T-t paths, multistage exhumation processes, and partial melting and preservation and retrogression of UHP index minerals during exhumation and their possible mechanisms are discussed. On this basis, the forthcoming key fields and scientific subjects of HT/UHP rocks within continental subduction channel are proposed.
基金supported by the Start-up Research Fund from Institute of Geology of CAGS(Grant No.J1219)National Natural Science Foundation of China(Grant No.40921001)China Geological Survey Projects(Grant Nos.1212011121275,1212011120161)and Sinoprobe Project
文摘Continental subduction and collision normally follows oceanic subduction,with the remarkable event of formation and exhumation of high-to ultra-high-pressure(HP-UHP)metamorphic rocks.Based on the summary of numerical geodynamic models,six modes of continental convergence have been identified:pure shear thickening,folding and buckling,one-sided steep subduction,flat subduction,two-sided subduction,and subducting slab break-off.In addition,the exhumation of HP-UHP rocks can be formulated into eight modes:thrust fault exhumation,buckling exhumation,material circulation,overpressure model,exhumation of a coherent crustal slice,episodic ductile extrusion,slab break-off induced eduction,and exhumation through fractured overriding lithosphere.During the transition from subduction to exhumation,the weakening and detachment of subducted continental crust are prerequisites.However,the dominant weakening mechanisms and their roles in the subduction channel are poorly constrained.To a first degree approximation,the mechanism of continental subduction and exhumation can be treated as a subduction channel flow model,which incorporates the competing effects of downward Couette(subduction)flow and upward Poiseuille(exhumation)flow in the subduction channel.However,the(de-)hydration effect plays significant roles in the deformation of subduction channel and overriding lithosphere,which thereby result in very different modes from the simple subduction channel flow.Three-dimensionality is another important issue with highlighting the along-strike differential modes of continental subduction,collision and exhumation in the same continental convergence belt.