The transition boundaries of period doubling on the physical parameter plane of a Duffing system are obtained by the general Newton′s method, and the motion on different areas divided by transition boundaries is stu...The transition boundaries of period doubling on the physical parameter plane of a Duffing system are obtained by the general Newton′s method, and the motion on different areas divided by transition boundaries is studied in this paper. When the physical parameters transpass the boundaries, the solutions of period T =2π/ω will lose their stability, and the solutions of period T =2π/ω take place. Continuous period doubling bifurcations lead to chaos.展开更多
A nonlinear lateral-torsional coupled vibration model of a planetary gear system was established by taking transmission errors,time varying meshing stiffness and multiple gear backlashes into account.The bifurcation d...A nonlinear lateral-torsional coupled vibration model of a planetary gear system was established by taking transmission errors,time varying meshing stiffness and multiple gear backlashes into account.The bifurcation diagram of the system's motion state with rotational speed of sun gear was conducted through four steps.As a bifurcation parameter,the effect of rotational speed on the bifurcation properties of the system was assessed.The study results reveal that periodic motion is the main motion state of planetary gear train in low speed region when ns<2 350 r/min,but chaos motion state is dominant in high speed region when ns>2 350 r/min,The way of periodic motion to chaos is doubling bifurcation.There are two kinds of unstable modes and nine unstable regions in the speed region when 1 000 r/min<ns<3 000 r/min.展开更多
By introducing the periodic parameter-switching signal to the Lorenz oscillator, a switched dynamic model is established. In order to investigate the mechanism of the behaviors of the whole system, bifurcation sets of...By introducing the periodic parameter-switching signal to the Lorenz oscillator, a switched dynamic model is established. In order to investigate the mechanism of the behaviors of the whole system, bifurcation sets of the subsystems are derived and the Poincar6 map of the switched system is defined by suitable local sections and local maps. Under certain parameter conditions, symmetric periodic oscillations may be observed. With the variation of parameter, the symmetry-breaking bifurcation mecha- nisms of the symmetric periodic oscillations can be understood by calculating the associated maximal Lyapunov exponent and Floquet multiplies. Meanwhile, the parameter values of the related local bifurcations, such as saddle-node, pitchfork and peri- od-doubling bifurcations are calculated based on the Floquet multiplies.展开更多
A triad mode resonance, or three-wave resonance, is typical of dynamical systems with quadratic nonlinearities. Suspended cables are found to be rich in triad mode resonant dynamics. In this paper, modulation equation...A triad mode resonance, or three-wave resonance, is typical of dynamical systems with quadratic nonlinearities. Suspended cables are found to be rich in triad mode resonant dynamics. In this paper, modulation equations for cable's triad resonance are formulated by the multiple scale method. Dynamic conservative quantities, i.e., mode energy and Manley-Rowe relations, are then constructed. Equilibrium/dynamic solutions of the modulation equations are obtained, and full investigations into their stability and bifurcation characteristics are presented. Various bifurcation behaviors are detected in cable's triad resonant responses, such as saddle-node, Hopf, pitchfork and period-doubling bifurcations. Nonlinear behaviors, like jump and saturation phenomena, are also found in cable's responses. Based upon the bifurcation analysis, two interesting properties associated with activation of cable's triad resonance are also proposed, i.e., energy barrier and directional dependence. The first gives the critical amplitude of high-frequency mode to activate cable's triad resonance, and the second characterizes the degree of difficulty for activating cable's triad resonance in two opposite directions, i.e., with positive or negative internal detuning parameter.展开更多
文摘The transition boundaries of period doubling on the physical parameter plane of a Duffing system are obtained by the general Newton′s method, and the motion on different areas divided by transition boundaries is studied in this paper. When the physical parameters transpass the boundaries, the solutions of period T =2π/ω will lose their stability, and the solutions of period T =2π/ω take place. Continuous period doubling bifurcations lead to chaos.
基金Project(50775108) supported by the National Natural Science Foundation of China
文摘A nonlinear lateral-torsional coupled vibration model of a planetary gear system was established by taking transmission errors,time varying meshing stiffness and multiple gear backlashes into account.The bifurcation diagram of the system's motion state with rotational speed of sun gear was conducted through four steps.As a bifurcation parameter,the effect of rotational speed on the bifurcation properties of the system was assessed.The study results reveal that periodic motion is the main motion state of planetary gear train in low speed region when ns<2 350 r/min,but chaos motion state is dominant in high speed region when ns>2 350 r/min,The way of periodic motion to chaos is doubling bifurcation.There are two kinds of unstable modes and nine unstable regions in the speed region when 1 000 r/min<ns<3 000 r/min.
基金supported by the National Natural Science Foundation of China (Grant Nos. 21276115, 11272135, 11202085)the Scientific Research Innovation Foundation of Jiangsu Province (Grant No. CXZZ13-0653)the Natural Science Foundation for Colleges and Universities of Jiangsu Province (Grant No. 11KJB130001)
文摘By introducing the periodic parameter-switching signal to the Lorenz oscillator, a switched dynamic model is established. In order to investigate the mechanism of the behaviors of the whole system, bifurcation sets of the subsystems are derived and the Poincar6 map of the switched system is defined by suitable local sections and local maps. Under certain parameter conditions, symmetric periodic oscillations may be observed. With the variation of parameter, the symmetry-breaking bifurcation mecha- nisms of the symmetric periodic oscillations can be understood by calculating the associated maximal Lyapunov exponent and Floquet multiplies. Meanwhile, the parameter values of the related local bifurcations, such as saddle-node, pitchfork and peri- od-doubling bifurcations are calculated based on the Floquet multiplies.
基金Supporting Program for Young Investigators,Hunan UniversityNational Science Foundation of China(Grant Nos.11502076 and 11572117)
文摘A triad mode resonance, or three-wave resonance, is typical of dynamical systems with quadratic nonlinearities. Suspended cables are found to be rich in triad mode resonant dynamics. In this paper, modulation equations for cable's triad resonance are formulated by the multiple scale method. Dynamic conservative quantities, i.e., mode energy and Manley-Rowe relations, are then constructed. Equilibrium/dynamic solutions of the modulation equations are obtained, and full investigations into their stability and bifurcation characteristics are presented. Various bifurcation behaviors are detected in cable's triad resonant responses, such as saddle-node, Hopf, pitchfork and period-doubling bifurcations. Nonlinear behaviors, like jump and saturation phenomena, are also found in cable's responses. Based upon the bifurcation analysis, two interesting properties associated with activation of cable's triad resonance are also proposed, i.e., energy barrier and directional dependence. The first gives the critical amplitude of high-frequency mode to activate cable's triad resonance, and the second characterizes the degree of difficulty for activating cable's triad resonance in two opposite directions, i.e., with positive or negative internal detuning parameter.