期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
多楔带横向非线性振动的理论计算和实验研究 被引量:1
1
作者 李占国 杨许刚 《长春大学学报》 2017年第12期1-3,9,共4页
考虑多楔带的粘弹性特性,采用Kelvin-Voit模型,建立了多楔带横向非线性振动方程,通过理论计算分析了不同转速下带中点处横向振动出现的多倍周期运动现象。利用两轮无负载试验装置,测量了不同转速下多楔带紧边中点处的横向振动位移,研究... 考虑多楔带的粘弹性特性,采用Kelvin-Voit模型,建立了多楔带横向非线性振动方程,通过理论计算分析了不同转速下带中点处横向振动出现的多倍周期运动现象。利用两轮无负载试验装置,测量了不同转速下多楔带紧边中点处的横向振动位移,研究不同激励频率对横向非线性振动的影响。 展开更多
关键词 粘弹性特性 横向非线性振动 倍周期运动
下载PDF
近代物理计算机数值模拟实验中Lorenz吸引子的探究分析
2
作者 王琳 陈荣军 《肇庆学院学报》 2020年第2期24-27,共4页
为进一步深入研究计算机数值模拟实验中的Lorenz吸引子的动力学系统,通过设计流程图编译程序进行探究分析,实验结果得出了Lorenz系统混沌吸引子的蝴蝶效应图.通过使初值发生千分之一的改变来观察实验中相应蝴蝶效应图的变化情况,验证了... 为进一步深入研究计算机数值模拟实验中的Lorenz吸引子的动力学系统,通过设计流程图编译程序进行探究分析,实验结果得出了Lorenz系统混沌吸引子的蝴蝶效应图.通过使初值发生千分之一的改变来观察实验中相应蝴蝶效应图的变化情况,验证了初值对混沌系统的影响.Lorenz方程反映的是一个非线性的混沌系统,但采用周期瑞利函数使系统迭代较长时间后,可以发现随着周期瑞利参数r1的逐渐增大,系统会形成稳定的周期状态. 展开更多
关键词 计算机模拟 Lorenz吸引子 混沌 初值敏感性 倍周期运动
下载PDF
Bifurcation and chaos study on transverse-torsional coupled 2K-H planetary gear train with multiple clearances 被引量:4
3
作者 盛冬平 朱如鹏 +2 位作者 靳广虎 陆凤霞 鲍和云 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第1期86-101,共16页
A new non-linear transverse-torsional coupled model was proposed for 2K-H planetary gear train, and gear's geometric eccentricity error, comprehensive transmission error, time-varying meshing stiffness, sun-planet... A new non-linear transverse-torsional coupled model was proposed for 2K-H planetary gear train, and gear's geometric eccentricity error, comprehensive transmission error, time-varying meshing stiffness, sun-planet and planet-ring gear pair's backlashes and sun gear's bearing clearance were taken into consideration. The solution of differential governing equation of motion was solved by applying variable step-size Runge-Kutta numerical integration method. The system motion state was investigated systematically and qualitatively, and exhibited diverse characteristics of bifurcation and chaos as well as non-linear behavior under different bifurcation parameters including meshing frequency, sun-planet backlash, planet-ring backlash and sun gear's bearing clearance. Analysis results show that the increasing damping could suppress the region of chaotic motion and improve the system's stability significantly. The route of crisis to chaotic motion was observed under the bifurcation parameter of meshing frequency. However, the routes of period doubling and crisis to chaos were identified under the bifurcation parameter of sun-planet backlash; besides, several different types of routes to chaos were observed and coexisted under the bifurcation parameter of planet-ring backlash including period doubling, Hopf bifurcation, 3T-periodic channel and crisis. Additionally, planet-ring backlash generated a strong coupling effect to system's non-linear behavior while the sun gear's bearing clearance produced weak coupling effect. Finally, quasi-periodic motion could be found under all above–mentioned bifurcation parameters and closely associated with the 3T-periodic motion. 展开更多
关键词 planetary gear train BIFURCATION CHAOS transverse-torsional coupling BACKLASH bearing clearance
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部