期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
异步电动机倍极比变极绕组新探
1
作者 王榕生 陈明志 +1 位作者 林文经 周必湘 《中小型电机》 1990年第4期9-11,共3页
提出倍极比变极新方法,以扩大变极绕组的选择范围,从中选出较佳的变极方案,并能针对不同情况消除某次谐波,改善电机性能。
关键词 异步电机 变级绕组 倍极化 变级
下载PDF
Porous honeycomb-like C3N4/rGO composite as host for high performance Li-S batteries 被引量:7
2
作者 Xiaomeng Bai Chunsheng Wang +4 位作者 Caifu Dong Chuanchuan Li Yanjun Zhai Weiwei Si Liqiang Xu 《Science China Materials》 SCIE EI CSCD 2019年第9期1265-1274,共10页
Lithium-sulfur (Li-S) batteries have attracted extensive attention along with the urgent increasing demand for energy storage owing to the high theoretical specific capacity and energy density, abundant reserves and l... Lithium-sulfur (Li-S) batteries have attracted extensive attention along with the urgent increasing demand for energy storage owing to the high theoretical specific capacity and energy density, abundant reserves and low cost of sulfur. However, the practical application of Li-S batteries is still impeded due to the low utilization of sulfur and serious shuttle-effect of lithium polysulfides (LiPSs). Here, we fabricated the porous honeycomb-like C3N4 (PHCN) through a hard template method. As a polar material, graphitic C3N4 has abundant nitrogen content (-58%), which can provide enough active sites to mitigate shuttle-effect, and then conductive reduced graphene oxide (rGO) was introduced to combine with PHCN to form PHCN/rGO composite in order to improve the utilization efficiency of sulfur. After sulfur loading, the PHCN/rGO/S cathode exhibited an initial discharge capacity of 1,061.1 mA h g^-1 at 0.2 C and outstanding rate performance at high current density of 5 C (495.1 mA h g^-1), and also retained 519 mA h g^-1, after 400 cycles at 1 C. Even at high sulfur loading (4.3 mg cm^-2), the capacity fade rate was only 0.16% per cycle at 0.5 C for 200 cycles. The above results demonstrate that the special design of PHCN/rGO composite as sulfur host has high potential application for Li-S rechargeable batteries. 展开更多
关键词 porous honeycomb-like graphitic C3N4 long cycleperformance lithium-sulfur batteries
原文传递
In-situ electropolymerized bipolar organic cathode for stable and high-rate lithium-ion batteries 被引量:2
3
作者 Wei Wang Chen Zhao +3 位作者 Jixing Yang Peixun Xiong Hai Su Yunhua Xu 《Science China Materials》 SCIE EI CAS CSCD 2021年第12期2938-2948,共11页
To address the dissolution issue and enhance the electrochemical performance of organic electrode materials,herein, a bipolar organic cathode was prepared by in-situ electropolymerization of amino-phenyl carbazole nap... To address the dissolution issue and enhance the electrochemical performance of organic electrode materials,herein, a bipolar organic cathode was prepared by in-situ electropolymerization of amino-phenyl carbazole naphthalene diimide(APCNDI). APCNDI is composed of n-type 1,4,5,8-naphthalene tetracarboxylic diimide that stores Li cations and p-type carbazole groups which react with anions and serve as polymerization sites. Electropolymerization completely eliminated the dissolution problem of APCNDI, and the electropolymerized cathode demonstrated a bipolar reaction with excellent electrochemical performance, stable cycling performance with a capacity retention of 92 mA h g;after1000 cycles, and a superior rate performance of 72 mA h g;at 10 A g;. The bipolar feature and reactions of APCNDI were systematically investigated and verified by multiple characterization techniques. Our findings provide a novel strategy for the design and fabrication of electrodes for high-performance organic batteries. 展开更多
关键词 lithium-ion battery bipolar organic cathode in-situ electropolymerization polyimide CARBAZOLE
原文传递
A unique co-recovery strategy of cathode and anode from spent LiFePO_(4) battery 被引量:3
4
作者 Kai-Di Du Yun-Feng Meng +4 位作者 Xin-Xin Zhao Xiao-Tong Wang Xiao-Xi Luo Wei Zhang Xing-Long Wu 《Science China Materials》 SCIE EI CAS CSCD 2022年第3期637-645,共9页
Along with the explosive growth in the market of new energy electric vehicles,the demand for Li-ion batteries(LIBs)has correspondingly expanded.Given the limited life of LIBs,numbers of spent LIBs are bound to be prod... Along with the explosive growth in the market of new energy electric vehicles,the demand for Li-ion batteries(LIBs)has correspondingly expanded.Given the limited life of LIBs,numbers of spent LIBs are bound to be produced.Because of the severe threats and challenges of spent LIBs to the environment,resources,and global sustainable development,the recycling and reuse of spent LIBs have become urgent.Herein,we propose a novel green and efficient direct recycling method,which realizes the concurrent reuse of LiFePO_(4)(LFP)cathode and graphite anode from spent LFP batteries.By optimizing the proportion of LFP and graphite,a hybrid LFP/graphite(LFPG)cathode was designed for a new type of dualion battery(DIB)that can achieve co-participation in the storage of both anions and cations.The hybrid LFPG cathode combines the excellent stability of LFP and the high conductivity of graphite to exhibit an extraordinary electrochemical performance.The best compound,i.e.,LFP:graphite=3:1,with the highest reversible capacity(~130 mAhg^(-1) at 25 mAg^(-1)),high voltage platform of 4.95 V,and outstanding cycle performance,was achieved.The specific diffusion behavior of Li^(+) and PF_(6)^(-) in the hybrid cathode was studied using electrode kinetic tests,further clarifying the working mechanism of DIBs.This study provides a new strategy toward the large-scale recycling of positive and negative electrodes of spent LIBs and establishes a precedent for designing new hybrid cathode materials for DIBs with superior performance using spent LIBs. 展开更多
关键词 LiFePO_(4) GRAPHITE dual-ion batteries spent LIBs RECYCLE
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部