文摘目的针对肝脏肿瘤检测方法对小尺寸肿瘤的检测能力较差和检测网络参数量过大的问题,在改进EfficientDet的基础上,提出用于肝脏肿瘤检测的多尺度自适应融合网络MAEfficientDet-D0(multiscale adaptive fusion network-D0)和MAEfficientDet-D1。方法首先,利用高效倒置瓶颈块替换EfficientDet骨干网络的移动倒置瓶颈块,在保证计算效率的同时,有效解决移动倒置瓶颈块的挤压激励网络维度和参数量较大的问题;其次,在特征融合网络前添加多尺度块,以扩大网络有效感受野,提高体积偏小病灶的检测能力;最后,提出多通路自适应加权特征融合块,以解决低层病灶特征图的语义偏弱和高层病灶特征图的细节感知能力较差的问题,提高了特征的利用率和增强模型对小尺寸肝脏肿瘤的检测能力。结果实验表明,高效倒置瓶颈层在少量增加网络复杂性的同时,可以有效提高网络对模糊图像的检测精度;多通路自适应加权特征融合模块可以有效融合含有上下文信息的深层特征和含有细节信息的浅层特征,进一步提高了模型对病灶特征的表达能力;多尺度自适应融合网络对肝脏肿瘤检测的效果明显优于对比模型。在LiTS(liver tumor segmentation)数据集上,MAEfficientDet-D0和MAEfficientDet-D1的mAP(mean average precision)分别为86.30%和87.39%;在3D-IRCADb(3D image reconstruction for comparison of algorithm database)数据集上,MAEfficientDet-D0和MAEfficientDet-D1的mAP分别为85.62%和86.46%。结论本文提出的MAEfficientDet系列网络提高了特征的利用率和小病灶的检测能力。相比主流检测网络,本文算法具有较好的检测精度和更少的参数量、计算量和运行时间,对肝脏肿瘤检测模型部署于嵌入式设备和移动终端设备具有重要参考价值。