Using long term observation data in the main part of East China Sea Kuroshio, variations of Kuroshio upper layer temperature and salinity, their relationships with surface temperature and precipitation in east China a...Using long term observation data in the main part of East China Sea Kuroshio, variations of Kuroshio upper layer temperature and salinity, their relationships with surface temperature and precipitation in east China are studied. Results reveal that the Kuroshio upper layer temperature experienced slight rise while salinity decreased in the past 50 years. In winter, Kuroshio upper layer temperature is closely related to the surface temperature in east China, and large area in east China shows positive correlation to the Kuroshio upper layer temperature, which might be related to the mass temperature reduction as a result of the cold air activities in winter. In summer, the increase of the precipitation causes the increase of diluted Yangtze River water into the shelf sea, thereby results in the salinity decrease of Kuroshio in the upper layer.展开更多
The interannual and interdecadal variations of moisture sinks over Guangdong are discussed with the NCEP/NCAR reanalysis data and observed precipitation data from 1958 to 2004. The results indicate that climatically, ...The interannual and interdecadal variations of moisture sinks over Guangdong are discussed with the NCEP/NCAR reanalysis data and observed precipitation data from 1958 to 2004. The results indicate that climatically, the amount of precipitation is larger than that of evaporation in spring and summer. Precipitation and evaporation almost balance each other in autumn and the amount of evaporation is larger than that of precipitation in winter. The interannual signal dominates the variations of moisture sinks in all seasons in Guangdong with a period of three-year oscillation in autumn and winter. Remarkable interdecadal signal characterized by a period of three-decade oscillation can be identified for winter and spring from seasonally averaged moisture sink data and from annually moisture data, with variance percentage larger than 40%. This result indicates that Guangdong is at a transitional stage from positive anomalies to negative anomalies. The moisture sink anomalies in winter and following spring over Guangdong are usually in-phase. Besides, there exist periodic oscillations with periods of 10 to 15 years in summer and autumn. The positive (negative) anomalies of moisture sinks over Guangdong are due to the intensified (weakened) moisture from the tropical areas being transported to the Southern China, accompanied by an intensified (weakened) moisture convergence.展开更多
基金supported by National Natural Science Foundation Project ‘Multi-core Structure of Antarctic Circumpolar Current and a Dynamic View of Its Spatial-temporal Variation’ (No. 40506011)The key project of the National Natural Science Foundation of China ‘Diagnostic Analysis and Numerical Simulation of the Inter-decadal Variations of East Asian Summer Monsoon and Summer Precipitation in East of China’ (No. 40331010)The key project of the Major Natural Fundamental Researches of Universities in Jiangsu Province ‘Research of development and prediction theory of Drought and Flood in the mid-lower reaches of Yangtze River’ (No. 05KJA17002)
文摘Using long term observation data in the main part of East China Sea Kuroshio, variations of Kuroshio upper layer temperature and salinity, their relationships with surface temperature and precipitation in east China are studied. Results reveal that the Kuroshio upper layer temperature experienced slight rise while salinity decreased in the past 50 years. In winter, Kuroshio upper layer temperature is closely related to the surface temperature in east China, and large area in east China shows positive correlation to the Kuroshio upper layer temperature, which might be related to the mass temperature reduction as a result of the cold air activities in winter. In summer, the increase of the precipitation causes the increase of diluted Yangtze River water into the shelf sea, thereby results in the salinity decrease of Kuroshio in the upper layer.
基金Natural Science Foundation of Guangdong Province (05003339)
文摘The interannual and interdecadal variations of moisture sinks over Guangdong are discussed with the NCEP/NCAR reanalysis data and observed precipitation data from 1958 to 2004. The results indicate that climatically, the amount of precipitation is larger than that of evaporation in spring and summer. Precipitation and evaporation almost balance each other in autumn and the amount of evaporation is larger than that of precipitation in winter. The interannual signal dominates the variations of moisture sinks in all seasons in Guangdong with a period of three-year oscillation in autumn and winter. Remarkable interdecadal signal characterized by a period of three-decade oscillation can be identified for winter and spring from seasonally averaged moisture sink data and from annually moisture data, with variance percentage larger than 40%. This result indicates that Guangdong is at a transitional stage from positive anomalies to negative anomalies. The moisture sink anomalies in winter and following spring over Guangdong are usually in-phase. Besides, there exist periodic oscillations with periods of 10 to 15 years in summer and autumn. The positive (negative) anomalies of moisture sinks over Guangdong are due to the intensified (weakened) moisture from the tropical areas being transported to the Southern China, accompanied by an intensified (weakened) moisture convergence.