The Tibetan Plateau(TP)is a prevalent region for convection systems due to its unique thermodynamic forcing.This study investigated isolated deep convections(IDCs),which have a smaller spatial and temporal size than m...The Tibetan Plateau(TP)is a prevalent region for convection systems due to its unique thermodynamic forcing.This study investigated isolated deep convections(IDCs),which have a smaller spatial and temporal size than mesoscale convective systems(MCSs),over the TP in the rainy season(June-September)during 2001–2020.The authors used satellite precipitation and brightness temperature observations from the Global Precipitation Measurement mission.Results show that IDCs mainly concentrate over the southern TP.The IDC number per rainy season decreases from around 140 over the southern TP to around 10 over the northern TP,with an average 54.2.The initiation time of IDCs exhibits an obvious diurnal cycle,with the peak at 1400–1500 LST and the valley at 0900–1000 LST.Most IDCs last less than five hours and more than half appear for only one hour.IDCs generally have a cold cloud area of 7422.9 km^(2),containing a precipitation area of approximately 65%.The larger the IDC,the larger the fraction of intense precipitation it contains.IDCs contribute approximately 20%–30%to total precipitation and approximately 30%–40%to extreme precipitation over the TP,with a larger percentage in July and August than in June and September.In terms of spatial distribution,IDCs contribute more to both total precipitation and extreme precipitation over the TP compared to the surrounding plain regions.IDCs over the TP account for a larger fraction than MCSs,indicating the important role of IDCs over the region.展开更多
Precipitation projections over the Tibetan Plateau(TP)show diversity among existing studies,partly due to model uncertainty.How to develop a reliable projection remains inconclusive.Here,based on the IPCC AR6–assesse...Precipitation projections over the Tibetan Plateau(TP)show diversity among existing studies,partly due to model uncertainty.How to develop a reliable projection remains inconclusive.Here,based on the IPCC AR6–assessed likely range of equilibrium climate sensitivity(ECS)and the climatological precipitation performance,the authors constrain the CMIP6(phase 6 of the Coupled Model Intercomparison Project)model projection of summer precipitation and water availability over the TP.The best estimates of precipitation changes are 0.24,0.25,and 0.45 mm d^(−1)(5.9%,6.1%,and 11.2%)under the Shared Socioeconomic Pathway(SSP)scenarios of SSP1–2.6,SSP2–4.5,and SSP5–8.5 from 2050–2099 relative to 1965–2014,respectively.The corresponding constrained projections of water availability measured by precipitation minus evaporation(P–E)are 0.10,0.09,and 0.22 mm d^(−1)(5.7%,4.9%,and 13.2%),respectively.The increase of precipitation and P–E projected by the high-ECS models,whose ECS values are higher than the upper limit of the likely range,are about 1.7 times larger than those estimated by constrained projections.Spatially,there is a larger increase in precipitation and P–E over the eastern TP,while the western part shows a relatively weak difference in precipitation and a drier trend in P–E.The wetter TP projected by the high-ECS models resulted from both an approximately 1.2–1.4 times stronger hydrological sensitivity and additional warming of 0.6℃–1.2℃ under all three scenarios during 2050–2099.This study emphasizes that selecting climate models with climate sensitivity within the likely range is crucial to reducing the uncertainty in the projection of TP precipitation and water availability changes.展开更多
Based on daily observation data of the Three Gorges Region(TGR)of the Yangtze River basin and global reanalysis data,the climate characteristics,climate events,and meteorological disasters of the TGR in 2022 and 2023 ...Based on daily observation data of the Three Gorges Region(TGR)of the Yangtze River basin and global reanalysis data,the climate characteristics,climate events,and meteorological disasters of the TGR in 2022 and 2023 were analyzed.For the TGR,the average annual temperature for 2022 and 2023 was 0.8℃ and 0.4℃ higher than normal,respectively,making them the two warmest years in the past decade.In 2022,the TGR experienced its warmest summer on record.The average air temperature was 2.4℃ higher than the average,and there were 24.8 days of above-average high temperature days during summer.Rainfall in the TGR varied significantly between 2022 and 2023.Annual rainfall was 18.4%below normal and drier than normal in most parts of the region.In contrast,the precipitation in 2023 was considerably higher than the long-term average,and above normal for almost the entire year.The average wind speed exhibited minimal variation between the two years.However,the number of foggy days and relative humidity increased in 2023 compared to 2022.In 2022–2023,the TGR mainly experienced meteorological disasters such as extreme high temperatures,regional heavy rain and flooding,overcast rain,and inverted spring chill.Analysis indicates that the abnormal western Pacific subtropical high and the abnormal persistence of the eastward-shifted South Asian high were the two important drivers of the durative enhancement of record-breaking high temperature in the summer of 2022.展开更多
Eight temperate deciduous tree species, Acer rubrum L., A. saccharinum L., A. saccharum Marsh., Belluta alleghaniensis Britton., Fraxinus nigra Marsh., Quercus rubra L., Titia americana L., and Ulmus americana L. in e...Eight temperate deciduous tree species, Acer rubrum L., A. saccharinum L., A. saccharum Marsh., Belluta alleghaniensis Britton., Fraxinus nigra Marsh., Quercus rubra L., Titia americana L., and Ulmus americana L. in eastern North America, were selected to explore relationship between the northward distribution of temperate tree species and climatic factors. For each species, more than 30 sites at their north limits of distribution were obtained from their distribution maps, and 11 climatic indices at the north limits were computed. The standardized standard deviation (SD) method, which compares the magnitude of variance of climatic indices, was used to detect which climatic parameter was the most important for explaining northward distribution of these species. We presume that the climatic parameter that has the smallest variance at the north limit would be assigned as the dominant climatic factor for limiting the distribution of this species. The results derived from the standardized SD method indicated that the SD value of warmth index (WI) and/or annual biotemperature (ABT) were the smallest among the 11 climatic indices. Since both WI and ABT represent growing season temperature, it suggested that growing season temperature was the most important climatic factor for explaining the northward distribution of these temperate tree species. The relationships between several climatic indices, WI, coldness index (CI), annual precipitation (AP), annual range of temperature (ART) and humid/arid index were also analyzed. As a result, at the north limits of all these species, both WI and CI decreased with an increase of AP, and CI increased with an increase of ART. Besides growing season temperature, precipitation and climatic continentality also have influence on the northward distribution of the temperate trees in eastern North America.展开更多
The woodland-steppe ecotone in the. southern Nei Mongol Plateau is located at the northern edge of the east Asian monsoon influences. A marked southeastern - northwestern (SE - NW) precipitation gradient exists in thi...The woodland-steppe ecotone in the. southern Nei Mongol Plateau is located at the northern edge of the east Asian monsoon influences. A marked southeastern - northwestern (SE - NW) precipitation gradient exists in this region. Quantitative reconstruction of palaeo-precipitation of this region is helpful to reveal the development of monsoon climate and to predict die future desertification. Based on modern vegetation and surface pollen studies, a pollen-precipitation transfer function in the study region was established. Pollen data from three sediment sequences within the ecotone were used to reconstruct palaeo-precipitation during the Holocene. The processes of precipitation changes in the three sequences were quite different. There was a tendency of precipitation declined from the onset of the Holocene to 1 100 a BP in Haoluku. But, in Liuzhouwan and Xiaoniuchang, both located south of Haoluku, the annual precipitation reached highest values during 7 800 - 6 200 a BP and 7 200 - 5 000 a BP, respectively. The influences of southwestern (SW) monsoon and the variances of topographical conditions have possibly caused these temporal-spatial variances.展开更多
Using the NDVI ratio method, the authors extracted phenological parameters from NOAA-AVHRR NDVI time-series data (1982-2008). The start of the growing season (SOS) and the date of maximum NDVI (Peak-t) correlate...Using the NDVI ratio method, the authors extracted phenological parameters from NOAA-AVHRR NDVI time-series data (1982-2008). The start of the growing season (SOS) and the date of maximum NDVI (Peak-t) correlated significantly with the mean annual precipitation along regional gradients of the steppes. Along the south transect (located at a lower latitude with a higher annual mean temperature) there was a positive correlation between the end of the growing season (EOS) and the mean annual precipitation along precipitation gradients (R2 = 0.709, p 〈 0.0001). However, along the north transect (located at higher latitude with lower annual mean temperature), the EOS was slightly negatively related with the mean annual precipitation (R2 = 0.179, p 〈 0.1). There was positive correlation between the length of the growing season and the annual precipitation along two transects (R2 = 0.876, p 〈 0.0001 for the south transect; R2 = 0.290, p 〈 0.01 for the north transect). Thus, for the Inner Mongolian steppe, it is precipitation rather than temperature that determines the date of the SOS.展开更多
Driven by the global model,Beijing Climate Center Climate System Model version 1.1(BCC_CSM1.1),climate change over China in the 21st century is simulated by a regional climate model(RegCM4.0)under the new emission sce...Driven by the global model,Beijing Climate Center Climate System Model version 1.1(BCC_CSM1.1),climate change over China in the 21st century is simulated by a regional climate model(RegCM4.0)under the new emission scenarios of the Representative Concentration Pathways—RCP4.5 and RCP8.5.This is based on a period of transient simulations from 1950 to2099,with a grid spacing of 50 km.The present paper focuses on the annual mean temperature and precipitation in China over this period,with emphasis on their future changes.Validation of model performance reveals marked improvement of the RegCM4.0 model in reproducing present day temperature and precipitation relative to the driving BCC_CSM1.1 model.Significant warming is simulated by both BCC_CSM1.1 and RegCM4.0,however,spatial distribution and magnitude differ between the simulations.The high emission scenario RCP8.5 results in greater warming compared to RCP4.5.The two models project different precipitation changes,characterized by a general increase in the BCC_CSM1.1,and broader areas with decrease in the RegCM4.0 simulations.展开更多
The interannual and interdecadal variations of moisture sinks over Guangdong are discussed with the NCEP/NCAR reanalysis data and observed precipitation data from 1958 to 2004. The results indicate that climatically, ...The interannual and interdecadal variations of moisture sinks over Guangdong are discussed with the NCEP/NCAR reanalysis data and observed precipitation data from 1958 to 2004. The results indicate that climatically, the amount of precipitation is larger than that of evaporation in spring and summer. Precipitation and evaporation almost balance each other in autumn and the amount of evaporation is larger than that of precipitation in winter. The interannual signal dominates the variations of moisture sinks in all seasons in Guangdong with a period of three-year oscillation in autumn and winter. Remarkable interdecadal signal characterized by a period of three-decade oscillation can be identified for winter and spring from seasonally averaged moisture sink data and from annually moisture data, with variance percentage larger than 40%. This result indicates that Guangdong is at a transitional stage from positive anomalies to negative anomalies. The moisture sink anomalies in winter and following spring over Guangdong are usually in-phase. Besides, there exist periodic oscillations with periods of 10 to 15 years in summer and autumn. The positive (negative) anomalies of moisture sinks over Guangdong are due to the intensified (weakened) moisture from the tropical areas being transported to the Southern China, accompanied by an intensified (weakened) moisture convergence.展开更多
Based on the records of social revolts in the Actual Annals of Qing Dynasty (a collection of official records), the revolts frequency (amount of counties where revolts happened every year) in North China Plain dur...Based on the records of social revolts in the Actual Annals of Qing Dynasty (a collection of official records), the revolts frequency (amount of counties where revolts happened every year) in North China Plain during the Qing Dynasty (1544 1911) is reconstructed. By comparing revolts frequency with temperature and precipitation series, the interaction between climate and social responses is analyzed. It can be concluded that revolts broke out more frequently in colder periods and less frequently in warmer periods, There were much more revolts in drought decades than in wet decades, and the three fatal peasant uprisings in the Qing Dynasty were all ignited by severe droughts. The impacts of changes in temperature and precipitation on revolts should be estimated at different time scales. The correspondence emerged at neither decadal nor yearly scale until the turn between 18th and 19th centuries, the critical period when per capita cropland area decreased to a vulnerable level. Food crisis increased the vulnerability of local society, and changes in temperature and precipitation became an important trigger for revolts.展开更多
Western China and central Asia are positioned centrally along the Millennium Silk Road,which is regarded as a core region bridging the East and the West.Understanding the potential changes in climate over this core re...Western China and central Asia are positioned centrally along the Millennium Silk Road,which is regarded as a core region bridging the East and the West.Understanding the potential changes in climate over this core region is important to the successful implementation of the so-called'Belt and Road Initiative'(a $1 trillion regional investment in infrastructure).In this study,both mean and extreme climate changes are projected using the ensemble mean of CMIP5 models.The results show a warming of ~1.5,2.9,3.6,and 6.0 ℃ under RCP2.6,4.5,6.0,and 8.5,respectively,by the end of the twenty-first century,with respect to the 1986-2005 baseline period.Meanwhile,the annual mean precipitation amount increases consistently across all RCPs,with an increase by ~14% with respect to 1986-2005 under RCP8.5.The warming over the Millennium Silk Road region reaches 1.5 ℃ before 2020 under all the emission scenarios.The 2020s (2030s) see a 2 ℃ warming under the RCP8.5 (RCP4.5) scenario.Global warming that is 0.5 ℃ lower (i.e.a warming of 1.5 ℃) could result in the avoidance of otherwise significant impacts in the Silk Road core region-specifically,a further warming of 0.73 ℃ (with an interquartile range of 0.49%-0.94 ℃) and an increase in the number of extreme heat days by 4.2,at a cost of a reduced increase of 2.72% (0.47%-3.82%) in annual precipitation.The change in consecutive dry days is region-dependent展开更多
The changes in a selection of extreme climate indices(maximum of daily maximum temperature(TXx),minimum of daily minimum temperature(TNn),annual total precipitation when the daily precipitation exceeds the 95th percen...The changes in a selection of extreme climate indices(maximum of daily maximum temperature(TXx),minimum of daily minimum temperature(TNn),annual total precipitation when the daily precipitation exceeds the 95th percentile of wet-day precipitation(very wet days,R95p),and the maximum number of consecutive days with less than 1 mm of precipitation(consecutive dry days,CDD))were projected using multi-model results from phase 5 of the Coupled Model Intercomparison Project in the early,middle,and latter parts of the 21st century under different Representative Concentration Pathway(RCP)emissions scenarios.The results suggest that TXx and TNn will increase in the future and,moreover,the increases of TNn under all RCPs are larger than those of TXx.R95p is projected to increase and CDD to decrease significantly.The changes in TXx,TNn,R95p,and CDD in eight sub-regions of China are different in the three periods of the 21st century,and the ranges of change for the four indices under the higher emissions scenario are projected to be larger than those under the lower emissions scenario.The multi-model simulations show remarkable consistency in their projection of the extreme temperature indices,but poor consistency with respect to the extreme precipitation indices.More substantial inconsistency is found in those regions where high and low temperatures are likely to happen for TXx and TNn,respectively.For extreme precipitation events(R95p),greater uncertainty appears in most of the southern regions,while for drought events(CDD)it appears in the basins of Xinjiang.The uncertainty in the future changes of the extreme climate indices increases with the increasing severity of the emissions scenario.展开更多
Runoff coefficients of the source regions of the Huanghe River in 1956-2000 were analyzed in this paper. In the 1990s runoff of Tangnaihai Hydrologic Station of the Huanghe River experienced a serious decrease, which ...Runoff coefficients of the source regions of the Huanghe River in 1956-2000 were analyzed in this paper. In the 1990s runoff of Tangnaihai Hydrologic Station of the Huanghe River experienced a serious decrease, which had attracted considerable attention. Climate changes have important impact on the water resources availability. From the view of water cycling, runoff coefficients are important indexes of water resources in a particular catchment. Kalinin baseflow separation technique was improved based on the characteristics of precipitation and streamflow. After the separation of runoff coefficient (R/P), baseflow coefficient (Br/P) and direct runoff coefficient (Dr/P) were estimated. Statistic analyses were applied to assessing the impact of precipitation and temperature on runoff coefficients (including Dr/P, Br/P and R/P). The results show that in the source regions of the Huanghe River, mean annual baseflow coefficient was higher than mean annual direct runoff coefficient. Annual runoff coefficients were in direct proportion to annual precipitation and in inverse proportion to annual mean temperature. The decrease of runoff coefficients in the 1990s was closely related to the decrease in precipitation and increase in temperature in the same period. Over different sub-basins of the source regions of the Huanghe River, runoff coefficients responded differently to precipitation and temperature. In the area above Jimai Hydrologic Station where annual mean temperature is -3.9℃, temperature is the main factor influencing the runoff coefficients. Runoff coefficients were in inverse relation to temperature, and precipitation had nearly no impact on runoff coefficients. In subbasin between Jimai and Maqu Hydrologic Station Dr/P was mainly affected by precipitation while R/P and Br/P were both significantly influenced by precipitation and temperature. In the area between Maqu and Tangnaihai hydrologic stations all the three runoff coefficients increased with the rising of annual precipitation, while direct runoff coefficient was inversely proportional to temperature. In the source regions of the Huanghe River with the increase of average annual temperature, the impacts of temperature on runoff coefficients become insignificant.展开更多
基金supported by the National Natural Science Foundation of China[grant number 42105064]the Second Tibetan Plateau Scientific Expedition and Research(STEP)program[grant number 2019QZKK0102]the special fund of the Yunnan University“double first-class”construction.
文摘The Tibetan Plateau(TP)is a prevalent region for convection systems due to its unique thermodynamic forcing.This study investigated isolated deep convections(IDCs),which have a smaller spatial and temporal size than mesoscale convective systems(MCSs),over the TP in the rainy season(June-September)during 2001–2020.The authors used satellite precipitation and brightness temperature observations from the Global Precipitation Measurement mission.Results show that IDCs mainly concentrate over the southern TP.The IDC number per rainy season decreases from around 140 over the southern TP to around 10 over the northern TP,with an average 54.2.The initiation time of IDCs exhibits an obvious diurnal cycle,with the peak at 1400–1500 LST and the valley at 0900–1000 LST.Most IDCs last less than five hours and more than half appear for only one hour.IDCs generally have a cold cloud area of 7422.9 km^(2),containing a precipitation area of approximately 65%.The larger the IDC,the larger the fraction of intense precipitation it contains.IDCs contribute approximately 20%–30%to total precipitation and approximately 30%–40%to extreme precipitation over the TP,with a larger percentage in July and August than in June and September.In terms of spatial distribution,IDCs contribute more to both total precipitation and extreme precipitation over the TP compared to the surrounding plain regions.IDCs over the TP account for a larger fraction than MCSs,indicating the important role of IDCs over the region.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research(STEP)program[grant number 2019QZKK0102]the Chinese Academy of Sciences[grant number 060GJHZ2023079GC].
文摘Precipitation projections over the Tibetan Plateau(TP)show diversity among existing studies,partly due to model uncertainty.How to develop a reliable projection remains inconclusive.Here,based on the IPCC AR6–assessed likely range of equilibrium climate sensitivity(ECS)and the climatological precipitation performance,the authors constrain the CMIP6(phase 6 of the Coupled Model Intercomparison Project)model projection of summer precipitation and water availability over the TP.The best estimates of precipitation changes are 0.24,0.25,and 0.45 mm d^(−1)(5.9%,6.1%,and 11.2%)under the Shared Socioeconomic Pathway(SSP)scenarios of SSP1–2.6,SSP2–4.5,and SSP5–8.5 from 2050–2099 relative to 1965–2014,respectively.The corresponding constrained projections of water availability measured by precipitation minus evaporation(P–E)are 0.10,0.09,and 0.22 mm d^(−1)(5.7%,4.9%,and 13.2%),respectively.The increase of precipitation and P–E projected by the high-ECS models,whose ECS values are higher than the upper limit of the likely range,are about 1.7 times larger than those estimated by constrained projections.Spatially,there is a larger increase in precipitation and P–E over the eastern TP,while the western part shows a relatively weak difference in precipitation and a drier trend in P–E.The wetter TP projected by the high-ECS models resulted from both an approximately 1.2–1.4 times stronger hydrological sensitivity and additional warming of 0.6℃–1.2℃ under all three scenarios during 2050–2099.This study emphasizes that selecting climate models with climate sensitivity within the likely range is crucial to reducing the uncertainty in the projection of TP precipitation and water availability changes.
基金supported by the National Key Research and Development Program of China[grant number 2023YFC3206001]the Three Gorges Project Comprehensive Monitoring Program for Operational Safety[grant number SK2023019]which funded by the Ministry of Water Resources of China.
文摘Based on daily observation data of the Three Gorges Region(TGR)of the Yangtze River basin and global reanalysis data,the climate characteristics,climate events,and meteorological disasters of the TGR in 2022 and 2023 were analyzed.For the TGR,the average annual temperature for 2022 and 2023 was 0.8℃ and 0.4℃ higher than normal,respectively,making them the two warmest years in the past decade.In 2022,the TGR experienced its warmest summer on record.The average air temperature was 2.4℃ higher than the average,and there were 24.8 days of above-average high temperature days during summer.Rainfall in the TGR varied significantly between 2022 and 2023.Annual rainfall was 18.4%below normal and drier than normal in most parts of the region.In contrast,the precipitation in 2023 was considerably higher than the long-term average,and above normal for almost the entire year.The average wind speed exhibited minimal variation between the two years.However,the number of foggy days and relative humidity increased in 2023 compared to 2022.In 2022–2023,the TGR mainly experienced meteorological disasters such as extreme high temperatures,regional heavy rain and flooding,overcast rain,and inverted spring chill.Analysis indicates that the abnormal western Pacific subtropical high and the abnormal persistence of the eastward-shifted South Asian high were the two important drivers of the durative enhancement of record-breaking high temperature in the summer of 2022.
文摘Eight temperate deciduous tree species, Acer rubrum L., A. saccharinum L., A. saccharum Marsh., Belluta alleghaniensis Britton., Fraxinus nigra Marsh., Quercus rubra L., Titia americana L., and Ulmus americana L. in eastern North America, were selected to explore relationship between the northward distribution of temperate tree species and climatic factors. For each species, more than 30 sites at their north limits of distribution were obtained from their distribution maps, and 11 climatic indices at the north limits were computed. The standardized standard deviation (SD) method, which compares the magnitude of variance of climatic indices, was used to detect which climatic parameter was the most important for explaining northward distribution of these species. We presume that the climatic parameter that has the smallest variance at the north limit would be assigned as the dominant climatic factor for limiting the distribution of this species. The results derived from the standardized SD method indicated that the SD value of warmth index (WI) and/or annual biotemperature (ABT) were the smallest among the 11 climatic indices. Since both WI and ABT represent growing season temperature, it suggested that growing season temperature was the most important climatic factor for explaining the northward distribution of these temperate tree species. The relationships between several climatic indices, WI, coldness index (CI), annual precipitation (AP), annual range of temperature (ART) and humid/arid index were also analyzed. As a result, at the north limits of all these species, both WI and CI decreased with an increase of AP, and CI increased with an increase of ART. Besides growing season temperature, precipitation and climatic continentality also have influence on the northward distribution of the temperate trees in eastern North America.
文摘The woodland-steppe ecotone in the. southern Nei Mongol Plateau is located at the northern edge of the east Asian monsoon influences. A marked southeastern - northwestern (SE - NW) precipitation gradient exists in this region. Quantitative reconstruction of palaeo-precipitation of this region is helpful to reveal the development of monsoon climate and to predict die future desertification. Based on modern vegetation and surface pollen studies, a pollen-precipitation transfer function in the study region was established. Pollen data from three sediment sequences within the ecotone were used to reconstruct palaeo-precipitation during the Holocene. The processes of precipitation changes in the three sequences were quite different. There was a tendency of precipitation declined from the onset of the Holocene to 1 100 a BP in Haoluku. But, in Liuzhouwan and Xiaoniuchang, both located south of Haoluku, the annual precipitation reached highest values during 7 800 - 6 200 a BP and 7 200 - 5 000 a BP, respectively. The influences of southwestern (SW) monsoon and the variances of topographical conditions have possibly caused these temporal-spatial variances.
基金jointly supported by the National Basic Research Program of China[973 Program,2012CB956202]the Collaborative Innovation Center of Research and Development on Tibetan Characteristic Agricultural and Animal Husbandry Resources
文摘Using the NDVI ratio method, the authors extracted phenological parameters from NOAA-AVHRR NDVI time-series data (1982-2008). The start of the growing season (SOS) and the date of maximum NDVI (Peak-t) correlated significantly with the mean annual precipitation along regional gradients of the steppes. Along the south transect (located at a lower latitude with a higher annual mean temperature) there was a positive correlation between the end of the growing season (EOS) and the mean annual precipitation along precipitation gradients (R2 = 0.709, p 〈 0.0001). However, along the north transect (located at higher latitude with lower annual mean temperature), the EOS was slightly negatively related with the mean annual precipitation (R2 = 0.179, p 〈 0.1). There was positive correlation between the length of the growing season and the annual precipitation along two transects (R2 = 0.876, p 〈 0.0001 for the south transect; R2 = 0.290, p 〈 0.01 for the north transect). Thus, for the Inner Mongolian steppe, it is precipitation rather than temperature that determines the date of the SOS.
基金supported by the National Basic Research Program of China (Grant No. 2010CB 950903)the China-UK-Swiss Adapting to Climate Change in China Project (ACCC)-Climate Science
文摘Driven by the global model,Beijing Climate Center Climate System Model version 1.1(BCC_CSM1.1),climate change over China in the 21st century is simulated by a regional climate model(RegCM4.0)under the new emission scenarios of the Representative Concentration Pathways—RCP4.5 and RCP8.5.This is based on a period of transient simulations from 1950 to2099,with a grid spacing of 50 km.The present paper focuses on the annual mean temperature and precipitation in China over this period,with emphasis on their future changes.Validation of model performance reveals marked improvement of the RegCM4.0 model in reproducing present day temperature and precipitation relative to the driving BCC_CSM1.1 model.Significant warming is simulated by both BCC_CSM1.1 and RegCM4.0,however,spatial distribution and magnitude differ between the simulations.The high emission scenario RCP8.5 results in greater warming compared to RCP4.5.The two models project different precipitation changes,characterized by a general increase in the BCC_CSM1.1,and broader areas with decrease in the RegCM4.0 simulations.
基金Natural Science Foundation of Guangdong Province (05003339)
文摘The interannual and interdecadal variations of moisture sinks over Guangdong are discussed with the NCEP/NCAR reanalysis data and observed precipitation data from 1958 to 2004. The results indicate that climatically, the amount of precipitation is larger than that of evaporation in spring and summer. Precipitation and evaporation almost balance each other in autumn and the amount of evaporation is larger than that of precipitation in winter. The interannual signal dominates the variations of moisture sinks in all seasons in Guangdong with a period of three-year oscillation in autumn and winter. Remarkable interdecadal signal characterized by a period of three-decade oscillation can be identified for winter and spring from seasonally averaged moisture sink data and from annually moisture data, with variance percentage larger than 40%. This result indicates that Guangdong is at a transitional stage from positive anomalies to negative anomalies. The moisture sink anomalies in winter and following spring over Guangdong are usually in-phase. Besides, there exist periodic oscillations with periods of 10 to 15 years in summer and autumn. The positive (negative) anomalies of moisture sinks over Guangdong are due to the intensified (weakened) moisture from the tropical areas being transported to the Southern China, accompanied by an intensified (weakened) moisture convergence.
基金supported by a grant from the National Basic Research Program of China(No 2010CB950103)grants from the National Science Foundation of China(No41071127,No40901099)
文摘Based on the records of social revolts in the Actual Annals of Qing Dynasty (a collection of official records), the revolts frequency (amount of counties where revolts happened every year) in North China Plain during the Qing Dynasty (1544 1911) is reconstructed. By comparing revolts frequency with temperature and precipitation series, the interaction between climate and social responses is analyzed. It can be concluded that revolts broke out more frequently in colder periods and less frequently in warmer periods, There were much more revolts in drought decades than in wet decades, and the three fatal peasant uprisings in the Qing Dynasty were all ignited by severe droughts. The impacts of changes in temperature and precipitation on revolts should be estimated at different time scales. The correspondence emerged at neither decadal nor yearly scale until the turn between 18th and 19th centuries, the critical period when per capita cropland area decreased to a vulnerable level. Food crisis increased the vulnerability of local society, and changes in temperature and precipitation became an important trigger for revolts.
基金supported by the National Natural Science Foundation of China[grant numbers 41330423,41420104006,and 41605057]
文摘Western China and central Asia are positioned centrally along the Millennium Silk Road,which is regarded as a core region bridging the East and the West.Understanding the potential changes in climate over this core region is important to the successful implementation of the so-called'Belt and Road Initiative'(a $1 trillion regional investment in infrastructure).In this study,both mean and extreme climate changes are projected using the ensemble mean of CMIP5 models.The results show a warming of ~1.5,2.9,3.6,and 6.0 ℃ under RCP2.6,4.5,6.0,and 8.5,respectively,by the end of the twenty-first century,with respect to the 1986-2005 baseline period.Meanwhile,the annual mean precipitation amount increases consistently across all RCPs,with an increase by ~14% with respect to 1986-2005 under RCP8.5.The warming over the Millennium Silk Road region reaches 1.5 ℃ before 2020 under all the emission scenarios.The 2020s (2030s) see a 2 ℃ warming under the RCP8.5 (RCP4.5) scenario.Global warming that is 0.5 ℃ lower (i.e.a warming of 1.5 ℃) could result in the avoidance of otherwise significant impacts in the Silk Road core region-specifically,a further warming of 0.73 ℃ (with an interquartile range of 0.49%-0.94 ℃) and an increase in the number of extreme heat days by 4.2,at a cost of a reduced increase of 2.72% (0.47%-3.82%) in annual precipitation.The change in consecutive dry days is region-dependent
基金supported by the R&D Special Fund for Public Welfare Industry (Meteorology) (Grant No. GYHY201306019)the National Natural Science Foundation of China (Grant No. 41275078)
文摘The changes in a selection of extreme climate indices(maximum of daily maximum temperature(TXx),minimum of daily minimum temperature(TNn),annual total precipitation when the daily precipitation exceeds the 95th percentile of wet-day precipitation(very wet days,R95p),and the maximum number of consecutive days with less than 1 mm of precipitation(consecutive dry days,CDD))were projected using multi-model results from phase 5 of the Coupled Model Intercomparison Project in the early,middle,and latter parts of the 21st century under different Representative Concentration Pathway(RCP)emissions scenarios.The results suggest that TXx and TNn will increase in the future and,moreover,the increases of TNn under all RCPs are larger than those of TXx.R95p is projected to increase and CDD to decrease significantly.The changes in TXx,TNn,R95p,and CDD in eight sub-regions of China are different in the three periods of the 21st century,and the ranges of change for the four indices under the higher emissions scenario are projected to be larger than those under the lower emissions scenario.The multi-model simulations show remarkable consistency in their projection of the extreme temperature indices,but poor consistency with respect to the extreme precipitation indices.More substantial inconsistency is found in those regions where high and low temperatures are likely to happen for TXx and TNn,respectively.For extreme precipitation events(R95p),greater uncertainty appears in most of the southern regions,while for drought events(CDD)it appears in the basins of Xinjiang.The uncertainty in the future changes of the extreme climate indices increases with the increasing severity of the emissions scenario.
基金Under the auspices of the Major State Basic Research Development Program of China (No. G19990436-01)the Na-tional Natural Science Foundation of China (No. 40471127)
文摘Runoff coefficients of the source regions of the Huanghe River in 1956-2000 were analyzed in this paper. In the 1990s runoff of Tangnaihai Hydrologic Station of the Huanghe River experienced a serious decrease, which had attracted considerable attention. Climate changes have important impact on the water resources availability. From the view of water cycling, runoff coefficients are important indexes of water resources in a particular catchment. Kalinin baseflow separation technique was improved based on the characteristics of precipitation and streamflow. After the separation of runoff coefficient (R/P), baseflow coefficient (Br/P) and direct runoff coefficient (Dr/P) were estimated. Statistic analyses were applied to assessing the impact of precipitation and temperature on runoff coefficients (including Dr/P, Br/P and R/P). The results show that in the source regions of the Huanghe River, mean annual baseflow coefficient was higher than mean annual direct runoff coefficient. Annual runoff coefficients were in direct proportion to annual precipitation and in inverse proportion to annual mean temperature. The decrease of runoff coefficients in the 1990s was closely related to the decrease in precipitation and increase in temperature in the same period. Over different sub-basins of the source regions of the Huanghe River, runoff coefficients responded differently to precipitation and temperature. In the area above Jimai Hydrologic Station where annual mean temperature is -3.9℃, temperature is the main factor influencing the runoff coefficients. Runoff coefficients were in inverse relation to temperature, and precipitation had nearly no impact on runoff coefficients. In subbasin between Jimai and Maqu Hydrologic Station Dr/P was mainly affected by precipitation while R/P and Br/P were both significantly influenced by precipitation and temperature. In the area between Maqu and Tangnaihai hydrologic stations all the three runoff coefficients increased with the rising of annual precipitation, while direct runoff coefficient was inversely proportional to temperature. In the source regions of the Huanghe River with the increase of average annual temperature, the impacts of temperature on runoff coefficients become insignificant.