This paper studies an initial-boundary-value problem (IBVP) of the Korteweg-de Vriesequation posed on a finite interval with general nonhomogeneous boundary conditions.Using thestrong Kato smoothing property of the as...This paper studies an initial-boundary-value problem (IBVP) of the Korteweg-de Vriesequation posed on a finite interval with general nonhomogeneous boundary conditions.Using thestrong Kato smoothing property of the associated linear problem,the IBVP is shown to be locallywell-posed in the space H^s(0,1) for any s≥0 via the contraction mapping principle.展开更多
Abstract In this paper, the author considers a class of bounded pseudoconvex domains, i.e., the generalized Cartan-Hartogs domains Ω(μ, m). The first result is that the natural Kahler metric gΩ(μ,m) of Ω(μ...Abstract In this paper, the author considers a class of bounded pseudoconvex domains, i.e., the generalized Cartan-Hartogs domains Ω(μ, m). The first result is that the natural Kahler metric gΩ(μ,m) of Ω(μ, m) is extremal if and only if its scalar curvature is a constant. The second result is that the Bergman metric, the Kahler-Einstein metric, the Caratheodary metric, and the Koboyashi metric are equivalent for Ω(μ, m).展开更多
基金supported by the Charles Phelps Taft Memorial Fund of the University of Cincinnatithe Chunhui program (State Education Ministry of China) under Grant No. 2007-1-61006
文摘This paper studies an initial-boundary-value problem (IBVP) of the Korteweg-de Vriesequation posed on a finite interval with general nonhomogeneous boundary conditions.Using thestrong Kato smoothing property of the associated linear problem,the IBVP is shown to be locallywell-posed in the space H^s(0,1) for any s≥0 via the contraction mapping principle.
基金supported by the National Natural Science Foundation of China(No.11371257)
文摘Abstract In this paper, the author considers a class of bounded pseudoconvex domains, i.e., the generalized Cartan-Hartogs domains Ω(μ, m). The first result is that the natural Kahler metric gΩ(μ,m) of Ω(μ, m) is extremal if and only if its scalar curvature is a constant. The second result is that the Bergman metric, the Kahler-Einstein metric, the Caratheodary metric, and the Koboyashi metric are equivalent for Ω(μ, m).