期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
一致光滑Banach空间中一类值域有界的非线性算子的Ishikawa迭代序列的收敛性
1
作者 罗开平 程涌涛 《乐山师范学院学报》 2006年第12期26-27,共2页
本文研究了一致光滑Banach空间中,一类值域有界的非线性算子的Ishikawa迭代序列的收敛性.
关键词 一致光滑BANACH空间 值域有界 ISHIKAWA迭代
下载PDF
Banach空间中一类混合映射不动点的Ishikawa迭代逼近问题
2
作者 汪志明 《数学的实践与认识》 CSCD 北大核心 2007年第9期180-183,共4页
设E为一致光滑Banach空间,K为E的非空闭凸子集,T:K→K为Φ-强伪压缩映射.其中T=T1+T2,T1:K→K为Lipschitz映射,T2:K→K为具有有界值域映射.设{αn}n∞=0和{βn}n∞=0是[0,1]中满足一定条件的两实数列.则Ishikawa迭代序列{xn}∞n=0强收敛... 设E为一致光滑Banach空间,K为E的非空闭凸子集,T:K→K为Φ-强伪压缩映射.其中T=T1+T2,T1:K→K为Lipschitz映射,T2:K→K为具有有界值域映射.设{αn}n∞=0和{βn}n∞=0是[0,1]中满足一定条件的两实数列.则Ishikawa迭代序列{xn}∞n=0强收敛于T的唯一不动点. 展开更多
关键词 LIPSCHITZ映射 有界值域映射 Ф-强伪压缩映射 ISHIKAWA迭代 一致光滑BANACH空间
原文传递
NONHOMOGENEOUS BOUNDARY VALUE PROBLEMS FOR THE KORTEWEG-DE VRIES EQUATION ON A BOUNDED DOMAIN 被引量:1
3
作者 Eugene F. KRAMER Bingyu ZHANG 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2010年第3期499-526,共28页
This paper studies an initial-boundary-value problem (IBVP) of the Korteweg-de Vriesequation posed on a finite interval with general nonhomogeneous boundary conditions.Using thestrong Kato smoothing property of the as... This paper studies an initial-boundary-value problem (IBVP) of the Korteweg-de Vriesequation posed on a finite interval with general nonhomogeneous boundary conditions.Using thestrong Kato smoothing property of the associated linear problem,the IBVP is shown to be locallywell-posed in the space H^s(0,1) for any s≥0 via the contraction mapping principle. 展开更多
关键词 KdV equation Korteweg-de Vries equation well-posed.
原文传递
Canonical Metrics on Generalized Cartan-Hartogs Domains
4
作者 Yihong HAO 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2016年第3期357-366,共10页
Abstract In this paper, the author considers a class of bounded pseudoconvex domains, i.e., the generalized Cartan-Hartogs domains Ω(μ, m). The first result is that the natural Kahler metric gΩ(μ,m) of Ω(μ... Abstract In this paper, the author considers a class of bounded pseudoconvex domains, i.e., the generalized Cartan-Hartogs domains Ω(μ, m). The first result is that the natural Kahler metric gΩ(μ,m) of Ω(μ, m) is extremal if and only if its scalar curvature is a constant. The second result is that the Bergman metric, the Kahler-Einstein metric, the Caratheodary metric, and the Koboyashi metric are equivalent for Ω(μ, m). 展开更多
关键词 Canonical metric Extremal metric Comparison theorem GeneralizedCartan-Hartogs domains
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部