The film cooling performance of chevron holes with different inclination angles and exit lateral diffusion angles has been studied experimentally and numerically. The inclination angles include 35° and 55°. ...The film cooling performance of chevron holes with different inclination angles and exit lateral diffusion angles has been studied experimentally and numerically. The inclination angles include 35° and 55°. The exit lateral diffusion angles include 20° and 25°. The film cooling effectiveness, heat transfer coefficient and discharge coefficient were measured on a flat plate model by transient liquid crystal measurement technique under four blowing ratios. The results show that the large inclination angle reduces the film cooling effectiveness. The influence of diffusion angle has two aspects: the large diffusion angle leads to mainstream ingestion and decreases film cooling effectiveness at M=1.0 and 1.5; however, the large diffusion angle increases the film cooling effectiveness at high blowing ratio of 2.0, because the larger hole exit area decreases the normal momentum component of the film jet. The large inclination angle decreases the heat transfer coefficient in the right downstream region at M=0.5 and 1.0. The large diffusion angle enhances the heat transfer in the right downstream of the holes in M=0.5~1.5 conditions. The chevron hole with large inclination angle generally has the highest discharge coefficient.展开更多
The natural convective heat transfer performance and thermo-fluidic characteristics of honeycombs with/without chimney extensions are numerically investigated.The present numerical simulations are validated by the pur...The natural convective heat transfer performance and thermo-fluidic characteristics of honeycombs with/without chimney extensions are numerically investigated.The present numerical simulations are validated by the purposely-designed experimental measurements on honeycombs with/without chimney.Good agreement between numerical simulation and experimental measurement is obtained.The influences of inclination angle and geometric parameters such as cell shape,streamwise and spanwise length are also numerically quantified.With the increment in inclination angle,the overall heat transfer rate decreases for the honeycombs with/without chimney.For honeycombs with the same void volume fraction but different cell shapes,there is little difference on the overall heat transfer rate.To enhance the natural convective heat transfer of honeycombs,these techniques including increasing the length of honeycomb in the streamwise/spanwise direction,increasing the thermal conductivity of hon-eycomb structure or adding a chimney extension may be helpful.展开更多
基金Financial support from the National Basic Research Program of China "973" (Grant No. 2013CB035702)
文摘The film cooling performance of chevron holes with different inclination angles and exit lateral diffusion angles has been studied experimentally and numerically. The inclination angles include 35° and 55°. The exit lateral diffusion angles include 20° and 25°. The film cooling effectiveness, heat transfer coefficient and discharge coefficient were measured on a flat plate model by transient liquid crystal measurement technique under four blowing ratios. The results show that the large inclination angle reduces the film cooling effectiveness. The influence of diffusion angle has two aspects: the large diffusion angle leads to mainstream ingestion and decreases film cooling effectiveness at M=1.0 and 1.5; however, the large diffusion angle increases the film cooling effectiveness at high blowing ratio of 2.0, because the larger hole exit area decreases the normal momentum component of the film jet. The large inclination angle decreases the heat transfer coefficient in the right downstream region at M=0.5 and 1.0. The large diffusion angle enhances the heat transfer in the right downstream of the holes in M=0.5~1.5 conditions. The chevron hole with large inclination angle generally has the highest discharge coefficient.
基金supported by the National 111 Project of China(Grant No.B06024)the National Basic Research Program of China("973"Project)(Grant No.2011CB610305)the National Natural Science Foundation of China(Grant No.51206128)
文摘The natural convective heat transfer performance and thermo-fluidic characteristics of honeycombs with/without chimney extensions are numerically investigated.The present numerical simulations are validated by the purposely-designed experimental measurements on honeycombs with/without chimney.Good agreement between numerical simulation and experimental measurement is obtained.The influences of inclination angle and geometric parameters such as cell shape,streamwise and spanwise length are also numerically quantified.With the increment in inclination angle,the overall heat transfer rate decreases for the honeycombs with/without chimney.For honeycombs with the same void volume fraction but different cell shapes,there is little difference on the overall heat transfer rate.To enhance the natural convective heat transfer of honeycombs,these techniques including increasing the length of honeycomb in the streamwise/spanwise direction,increasing the thermal conductivity of hon-eycomb structure or adding a chimney extension may be helpful.