Let D=pq be the product of two distinct odd primes.Assuming the parity conjecture,we construct infinitely many r≥1 such that E2rD:y2=x3-2rDx has conjectural rank one and vp(x([k]Q))≠vq(x([k]Q))for any odd integer k,...Let D=pq be the product of two distinct odd primes.Assuming the parity conjecture,we construct infinitely many r≥1 such that E2rD:y2=x3-2rDx has conjectural rank one and vp(x([k]Q))≠vq(x([k]Q))for any odd integer k,where Q is the generator of the free part of E(Q).Furthermore,under the generalized Riemann hypothesis,the minimal value of r is less than c log4 D for some absolute constant c.As a corollary,one can factor D by computing the generator Q.展开更多
基金supported by National Natural Science Foundation of China (Grant No. 11271212)
文摘Let D=pq be the product of two distinct odd primes.Assuming the parity conjecture,we construct infinitely many r≥1 such that E2rD:y2=x3-2rDx has conjectural rank one and vp(x([k]Q))≠vq(x([k]Q))for any odd integer k,where Q is the generator of the free part of E(Q).Furthermore,under the generalized Riemann hypothesis,the minimal value of r is less than c log4 D for some absolute constant c.As a corollary,one can factor D by computing the generator Q.