期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
基于利用BP神经网络进行Stacking模型融合算法的电力非节假日负荷预测研究 被引量:4
1
作者 李昆明 厉文婕 《软件》 2019年第9期176-181,共6页
短期负荷预测尤其是非节假日负荷预测对提升电力系统整体调度、支撑电网运营工作起着十分关键的作用。目前针对非节假日负荷预测的理论、方法和应用层出不穷,但是预测精度和使用范围都受到一定限制,并且经济发展对短期负荷预测的精度提... 短期负荷预测尤其是非节假日负荷预测对提升电力系统整体调度、支撑电网运营工作起着十分关键的作用。目前针对非节假日负荷预测的理论、方法和应用层出不穷,但是预测精度和使用范围都受到一定限制,并且经济发展对短期负荷预测的精度提出越来越高的要求,传统的机器学习算法已经难以满足人们的需求。为了提高负荷预测的精度,本文提出了利用BP神经网络进行Stacking模型融合算法,它是基于集成学习的思想,首先挑选五种预测精度较高的单模型,然后利用Stacking模型融合方法将其集成为预测精度更高的综合模型。本文采用此算法预测某省2018年非节假日负荷,结果表明该算法可以有效提高预测精度。 展开更多
关键词 预测精度 非节假日负荷预测 BP神经网络 Stacking模型融合
下载PDF
基于分形特性修正气象相似日的节假日短期负荷预测方法 被引量:31
2
作者 李滨 黄佳 +1 位作者 吴茵 覃芳璐 《电网技术》 EI CSCD 北大核心 2017年第6期1949-1955,共7页
节假日负荷易受气象信息、国家调休政策等影响,预测精度较低。为解决上述问题,提出了基于分形特性修正气象相似日的节假日短期负荷预测方法。采用归一化处理和日期适当调整,解决了数据值之间的差异性、经济增长率和负荷变化趋势不一致... 节假日负荷易受气象信息、国家调休政策等影响,预测精度较低。为解决上述问题,提出了基于分形特性修正气象相似日的节假日短期负荷预测方法。采用归一化处理和日期适当调整,解决了数据值之间的差异性、经济增长率和负荷变化趋势不一致的问题;将分形特性的自相似性引入节假日短期负荷预测,剔除气象突变带来的不良影响,在海量历史样本集中精准确定相似日查找范围;依据相似性原理,综合考虑气象、日类型等影响因素,建立曲线辨析函数计算负荷的差异系数,在特定范围内查找与待预测节假日气象最相似的一天。以南方某电网数据为实际算例进行仿真,结果表明所提出方法满足工程实际的需求,其中2015年春节期间96点日负荷准确度达97.63%。 展开更多
关键词 假日短期负荷预测 气象相似日 分形自相似性
下载PDF
基于参数迁移的节假日短期负荷预测方法 被引量:5
3
作者 蔡秋娜 苏炳洪 +2 位作者 闫斌杰 向明旭 温亚坤 《电气自动化》 2020年第4期59-60,98,共3页
在短期负荷预测中,节假日负荷的相关数据通常较少且负荷规律和平常日差异较大,因此节假日负荷预测的精度往往较差。为此,提出了一种基于参数迁移的节假日短期负荷预测方法,采用深度神经网络结合迁移学习以提高节假日负荷预测精度,用某... 在短期负荷预测中,节假日负荷的相关数据通常较少且负荷规律和平常日差异较大,因此节假日负荷预测的精度往往较差。为此,提出了一种基于参数迁移的节假日短期负荷预测方法,采用深度神经网络结合迁移学习以提高节假日负荷预测精度,用某省电网的实际负荷数据进行了仿真分析。结果表明,方法能有效提高节假日负荷预测的准确性。 展开更多
关键词 负荷预测 迁移学习 参数迁移 假日负荷预测 深度神经网络
下载PDF
基于样本扩展和特征标记的节假日短期负荷预测 被引量:10
4
作者 张乔榆 蔡秋娜 +4 位作者 刘思捷 闫斌杰 苏炳洪 易江文 杨杉 《广东电力》 2019年第7期67-74,共8页
针对目前节假日负荷预测中有效样本缺乏的问题,基于休息日与节假日负荷特性的相似性分析,提出一种扩展样本策略,以丰富基础样本数据量;探讨了对负荷样本节假日特征属性的标记方式,并构建了一种有效的相关因素矢量;最后结合支持向量机(su... 针对目前节假日负荷预测中有效样本缺乏的问题,基于休息日与节假日负荷特性的相似性分析,提出一种扩展样本策略,以丰富基础样本数据量;探讨了对负荷样本节假日特征属性的标记方式,并构建了一种有效的相关因素矢量;最后结合支持向量机(support vector machine,SVM)算法,对节假日负荷进行预测,以提高其预测结果的精度。算例结果表明,与传统方法相比,所提方法能够有效提高负荷预测精度,可推广应用于实践中。 展开更多
关键词 假日短期负荷预测 样本扩展 特征标记 支持向量机
下载PDF
遗传支持向量机在城市节假日电力负荷预测中的应用 被引量:1
5
作者 唐山 张现刚 《产业与科技论坛》 2012年第1期91-92,114,共3页
支持向量机(support vector machines,SVM)根据有限的样本信息在模型的复杂性和学习能力之间寻求最佳折衷,具有良好的预测效果?但是在基于支持向量机的负荷预测方法中,参数的选择对预测结果具有较大影响,可能导致结果误差较大。本文利... 支持向量机(support vector machines,SVM)根据有限的样本信息在模型的复杂性和学习能力之间寻求最佳折衷,具有良好的预测效果?但是在基于支持向量机的负荷预测方法中,参数的选择对预测结果具有较大影响,可能导致结果误差较大。本文利用遗传算法对SVM的参数最优值进行自动搜索,改善其预测性能。然后将遗传支持向量机(GA-SVM)应用于广东省某城市的节假日电力负荷预测。结果表明,基于遗传支持向量机的预测效果比相似日法更好。 展开更多
关键词 支持向量机 遗传算法 城市节假日电力负荷预测 电力系统
下载PDF
日最大负荷特性分析及预测方法 被引量:8
6
作者 马立新 李渊 《电力系统及其自动化学报》 CSCD 北大核心 2014年第10期31-34,共4页
电力调度和市场营销部门对电力负荷数据的走势形态和预测方法十分重视。在实际应用中,电力市场对提前预测未来连续多天的日最大负荷提出了新的要求。本文根据电力系统中日最大负荷的历史数据,分法定假日与非假日两部分单独研究其特性。... 电力调度和市场营销部门对电力负荷数据的走势形态和预测方法十分重视。在实际应用中,电力市场对提前预测未来连续多天的日最大负荷提出了新的要求。本文根据电力系统中日最大负荷的历史数据,分法定假日与非假日两部分单独研究其特性。对于假日最大负荷的预测,设定假日因子;对于非假日,通过小波分解提取日最大负荷变化的周期特征,再分别建立相应的BP神经网络模型进行预测。通过对某市电力负荷数据的预测及结果表明:采用这种组合方法可行有效、预测精度满足行业要求。有较强的理论意义和广泛地应用前景。 展开更多
关键词 特征提取 连续多天负荷预测 日最大负荷 假日负荷预测 神经网络
下载PDF
基于高阶BP神经网络的日最大负荷预测 被引量:2
7
作者 马立新 李渊 +1 位作者 郑晓栋 尹晶晶 《能源研究与信息》 2016年第3期153-157,共5页
随着社会的发展,人们的日常生活和工作生产越来越依赖于电力系统.精准的电力负荷预测是电网安全、稳定运行的重要保障.为减小节假日在日最大负荷预测过程中的影响,提出了法定节假日对日最大负荷的影响及日类型量化处理方法,并采用一种... 随着社会的发展,人们的日常生活和工作生产越来越依赖于电力系统.精准的电力负荷预测是电网安全、稳定运行的重要保障.为减小节假日在日最大负荷预测过程中的影响,提出了法定节假日对日最大负荷的影响及日类型量化处理方法,并采用一种改进的BP(back propagation)神经网络——高阶BP神经网络进行连续多天最大负荷预测.实验算例结果表明:该数据处理和预测方法能有效地减小节假日对负荷预测的影响,提高了预测精度,并有较强的工程实践价值和应用前景. 展开更多
关键词 负荷预测 日最大负荷 日类型 假日负荷预测 高阶BP神经网络
下载PDF
Transformer-based correction scheme for short-term bus load prediction in holidays
8
作者 Tang Ningkai Lu Jixiang +3 位作者 Chen Tianyu Shu Jiao Chang Li Chen Tao 《Journal of Southeast University(English Edition)》 EI CAS 2024年第3期304-312,共9页
To tackle the problem of inaccurate short-term bus load prediction,especially during holidays,a Transformer-based scheme with tailored architectural enhancements is proposed.First,the input data are clustered to reduc... To tackle the problem of inaccurate short-term bus load prediction,especially during holidays,a Transformer-based scheme with tailored architectural enhancements is proposed.First,the input data are clustered to reduce complexity and capture inherent characteristics more effectively.Gated residual connections are then employed to selectively propagate salient features across layers,while an attention mechanism focuses on identifying prominent patterns in multivariate time-series data.Ultimately,a pre-trained structure is incorporated to reduce computational complexity.Experimental results based on extensive data show that the proposed scheme achieves improved prediction accuracy over comparative algorithms by at least 32.00%consistently across all buses evaluated,and the fitting effect of holiday load curves is outstanding.Meanwhile,the pre-trained structure drastically reduces the training time of the proposed algorithm by more than 65.75%.The proposed scheme can efficiently predict bus load results while enhancing robustness for holiday predictions,making it better adapted to real-world prediction scenarios. 展开更多
关键词 short-term bus load prediction Transformer network holiday load pre-training model load clustering
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部