期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于样本不同属性综合的鲁棒偏倚赖主动学习分类算法研究
1
作者
任大伟
胡正平
高文涛
《燕山大学学报》
CAS
2011年第1期74-80,共7页
主动学习算法可以有效减少样本标注的工作量,每次选取最有信息量的样本交由专家标注。样本的代表性与不确定性都是衡量样本信息量的重要因素,将两者综合考虑能够获得更好的综合效果,但在两者的结合方式上一直存在不少问题,导致算法的适...
主动学习算法可以有效减少样本标注的工作量,每次选取最有信息量的样本交由专家标注。样本的代表性与不确定性都是衡量样本信息量的重要因素,将两者综合考虑能够获得更好的综合效果,但在两者的结合方式上一直存在不少问题,导致算法的适应性不强。为解决该问题,本文提出了基于样本不同属性的鲁棒偏倚赖主动学习分类算法,通过引入偏倚赖权值系数函数,在综合考虑样本的代表性和不确定性的同时,更可以突出样本的特性。同时由于样本代表性模型的渐变,在选择样本过程中更能突出代表性样本与不确定性样本的学习层次,前期训练以代表性样本为主,后期训练以不确定性样本为主,使得算法的适应性大大提高。在UCI机器学习数据库上的仿真实验结果表明本文的思路是合理可行的,在实验所用数据集上,与所提供的对比算法相比,本文的方法只需较少的标注样本便可以达到相同的分类正确率。
展开更多
关键词
主动学习
偏倚赖
样本代表性
样本不确定性
分类
下载PDF
职称材料
题名
基于样本不同属性综合的鲁棒偏倚赖主动学习分类算法研究
1
作者
任大伟
胡正平
高文涛
机构
燕山大学信息科学与工程学院
出处
《燕山大学学报》
CAS
2011年第1期74-80,共7页
基金
河北省自然科学基金资助项目(F2008000891F2010001297)
中国博士后自然科学基金资助项目(20080440124)
第二批中国博士后基金特别资助项目(200902356)
文摘
主动学习算法可以有效减少样本标注的工作量,每次选取最有信息量的样本交由专家标注。样本的代表性与不确定性都是衡量样本信息量的重要因素,将两者综合考虑能够获得更好的综合效果,但在两者的结合方式上一直存在不少问题,导致算法的适应性不强。为解决该问题,本文提出了基于样本不同属性的鲁棒偏倚赖主动学习分类算法,通过引入偏倚赖权值系数函数,在综合考虑样本的代表性和不确定性的同时,更可以突出样本的特性。同时由于样本代表性模型的渐变,在选择样本过程中更能突出代表性样本与不确定性样本的学习层次,前期训练以代表性样本为主,后期训练以不确定性样本为主,使得算法的适应性大大提高。在UCI机器学习数据库上的仿真实验结果表明本文的思路是合理可行的,在实验所用数据集上,与所提供的对比算法相比,本文的方法只需较少的标注样本便可以达到相同的分类正确率。
关键词
主动学习
偏倚赖
样本代表性
样本不确定性
分类
Keywords
active learning
partial dependency
representative of data selection
uncertainty of data selection
classification
分类号
TP181 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于样本不同属性综合的鲁棒偏倚赖主动学习分类算法研究
任大伟
胡正平
高文涛
《燕山大学学报》
CAS
2011
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部