期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于样本不同属性综合的鲁棒偏倚赖主动学习分类算法研究
1
作者 任大伟 胡正平 高文涛 《燕山大学学报》 CAS 2011年第1期74-80,共7页
主动学习算法可以有效减少样本标注的工作量,每次选取最有信息量的样本交由专家标注。样本的代表性与不确定性都是衡量样本信息量的重要因素,将两者综合考虑能够获得更好的综合效果,但在两者的结合方式上一直存在不少问题,导致算法的适... 主动学习算法可以有效减少样本标注的工作量,每次选取最有信息量的样本交由专家标注。样本的代表性与不确定性都是衡量样本信息量的重要因素,将两者综合考虑能够获得更好的综合效果,但在两者的结合方式上一直存在不少问题,导致算法的适应性不强。为解决该问题,本文提出了基于样本不同属性的鲁棒偏倚赖主动学习分类算法,通过引入偏倚赖权值系数函数,在综合考虑样本的代表性和不确定性的同时,更可以突出样本的特性。同时由于样本代表性模型的渐变,在选择样本过程中更能突出代表性样本与不确定性样本的学习层次,前期训练以代表性样本为主,后期训练以不确定性样本为主,使得算法的适应性大大提高。在UCI机器学习数据库上的仿真实验结果表明本文的思路是合理可行的,在实验所用数据集上,与所提供的对比算法相比,本文的方法只需较少的标注样本便可以达到相同的分类正确率。 展开更多
关键词 主动学习 偏倚赖 样本代表性 样本不确定性 分类
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部