偏产量势论是阐明作物性状和环境相关的内部规律的理论。可用数学模式 y=A·Y+C(实际产量=总产量势·最高产量+校正值)表达。式中 A=w·n·a·t·l,(总产量势是水分、养份、空气、温度、光照五个偏产量势的乘积...偏产量势论是阐明作物性状和环境相关的内部规律的理论。可用数学模式 y=A·Y+C(实际产量=总产量势·最高产量+校正值)表达。式中 A=w·n·a·t·l,(总产量势是水分、养份、空气、温度、光照五个偏产量势的乘积)。设 t 和 l 的偏产量势值为1时,总产量势(A)就等于土壤肥力势(A_f),A_f=w·u·a。应用偏产量势理论可以较全面地分析和处理农业生产和科研工作的各种问题。结合测土施肥技术,建立土壤肥力表是研究作物施肥问题的必要步骤。展开更多
Based on the vibrational potential curves coupled with the minimum energy reaction path, the partial potential energy surface of the reaction I+HI→IH+I was constructed at the QCISD(T)//MP4SDQ level with pseudo po...Based on the vibrational potential curves coupled with the minimum energy reaction path, the partial potential energy surface of the reaction I+HI→IH+I was constructed at the QCISD(T)//MP4SDQ level with pseudo potential method. And the formation mechanism of the scattering resonance states of this reaction was well interpreted with the partial potential energy surface. The scattering resonance states of this reaction should belong to Feshbach resonance because of the coupling of the vibrational mode and the translational mode. With the one-dimensional square potential well model, the resonance width and lifetime of the I+HI(v=0)→IH(v'=0)+I state-to-state reaction were calculated, which preferably explained the high-resolved threshold photodetachment spectroscopy of the IHI- anion performed by Neumark et al..展开更多
Unidirectional transport of a particle in a spatially periodic and symmetric potential under a periodic force with broken temporal symmetry is studied. With a collaboration of the potential field and the asymmetric ac...Unidirectional transport of a particle in a spatially periodic and symmetric potential under a periodic force with broken temporal symmetry is studied. With a collaboration of the potential field and the asymmetric ac force, a dc current can be observed. Resonant current steps are found for a finite period of the ac force. A phase diagram of these resonant steps is given. Stochastic-resonance-like directional transport induced by thermal noises is revealed.展开更多
The Dielectropheretic assembly of electrically functional microwires from nanopartical suspensions is introduced. Meanwhile growth mechanism of the microwires is discussed. The agglomeration is based on the polarizati...The Dielectropheretic assembly of electrically functional microwires from nanopartical suspensions is introduced. Meanwhile growth mechanism of the microwires is discussed. The agglomeration is based on the polarization and mobility of particles caused by alternating electric fields, commonly referred to as dielectrophoresis (DEP). The spatial distributions of the electric potential, field and dieletrophoretic force are analytically calculated in terms of AC electrokinetics. The calculated results show that the electrophoretic force, very strong near the apex of the microwire, drops abruptly with increasing distance. The electrophoretic force near the apex of the microwire agrees well with the fact that the nanoparticles are highly concentrated at the end of the tip and subsequently aggregate to extend the wire in the direction of the field gradient.展开更多
A macroscopic frost heave model with more clear parameters was established. Based on a porosity rate frost heave model and segregation potential theory, a porosity rate function was deduced and introduced into the str...A macroscopic frost heave model with more clear parameters was established. Based on a porosity rate frost heave model and segregation potential theory, a porosity rate function was deduced and introduced into the stress-strain relationship. Numerical simulation was conducted and verified by frost heave tests. Results show that the porosity rate within the frozen fringe is proportional to the square of temperature gradient and current porosity, and is also proportional to the exponential function of applied pressure. The relative errors between the calculated and measured results of frost depth and frost heave are within 3% and 15% respectively, demonstrating that the temperature gradient, applied pressure and current porosity are the main influencing factors, while temperature is just the constraint of frozen fringe. The improved model have meaningful and accessible parameters, which can be used in engineering with good accuracy.展开更多
文摘偏产量势论是阐明作物性状和环境相关的内部规律的理论。可用数学模式 y=A·Y+C(实际产量=总产量势·最高产量+校正值)表达。式中 A=w·n·a·t·l,(总产量势是水分、养份、空气、温度、光照五个偏产量势的乘积)。设 t 和 l 的偏产量势值为1时,总产量势(A)就等于土壤肥力势(A_f),A_f=w·u·a。应用偏产量势理论可以较全面地分析和处理农业生产和科研工作的各种问题。结合测土施肥技术,建立土壤肥力表是研究作物施肥问题的必要步骤。
基金Ⅴ. ACKN0WLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.20573064) and Ph.D. Special Research Foundation of Chinese Education Department.
文摘Based on the vibrational potential curves coupled with the minimum energy reaction path, the partial potential energy surface of the reaction I+HI→IH+I was constructed at the QCISD(T)//MP4SDQ level with pseudo potential method. And the formation mechanism of the scattering resonance states of this reaction was well interpreted with the partial potential energy surface. The scattering resonance states of this reaction should belong to Feshbach resonance because of the coupling of the vibrational mode and the translational mode. With the one-dimensional square potential well model, the resonance width and lifetime of the I+HI(v=0)→IH(v'=0)+I state-to-state reaction were calculated, which preferably explained the high-resolved threshold photodetachment spectroscopy of the IHI- anion performed by Neumark et al..
文摘Unidirectional transport of a particle in a spatially periodic and symmetric potential under a periodic force with broken temporal symmetry is studied. With a collaboration of the potential field and the asymmetric ac force, a dc current can be observed. Resonant current steps are found for a finite period of the ac force. A phase diagram of these resonant steps is given. Stochastic-resonance-like directional transport induced by thermal noises is revealed.
基金Funded by the Applied Basic Research Project of the Science and Technology Committee of Chongqing (No. 7327) and Key Teacher Foundation of Chongqing University.
文摘The Dielectropheretic assembly of electrically functional microwires from nanopartical suspensions is introduced. Meanwhile growth mechanism of the microwires is discussed. The agglomeration is based on the polarization and mobility of particles caused by alternating electric fields, commonly referred to as dielectrophoresis (DEP). The spatial distributions of the electric potential, field and dieletrophoretic force are analytically calculated in terms of AC electrokinetics. The calculated results show that the electrophoretic force, very strong near the apex of the microwire, drops abruptly with increasing distance. The electrophoretic force near the apex of the microwire agrees well with the fact that the nanoparticles are highly concentrated at the end of the tip and subsequently aggregate to extend the wire in the direction of the field gradient.
基金Supported by National Natural Science Foundation of China (No. 40571032)Open Research Fund Program of State Key Laboratory for Geomechanics and Deep Underground Engineering (SKLGDUE 08001X)
文摘A macroscopic frost heave model with more clear parameters was established. Based on a porosity rate frost heave model and segregation potential theory, a porosity rate function was deduced and introduced into the stress-strain relationship. Numerical simulation was conducted and verified by frost heave tests. Results show that the porosity rate within the frozen fringe is proportional to the square of temperature gradient and current porosity, and is also proportional to the exponential function of applied pressure. The relative errors between the calculated and measured results of frost depth and frost heave are within 3% and 15% respectively, demonstrating that the temperature gradient, applied pressure and current porosity are the main influencing factors, while temperature is just the constraint of frozen fringe. The improved model have meaningful and accessible parameters, which can be used in engineering with good accuracy.