On the basis of the paoers[3—7],this paper study the monotonicity problems for the positive semidefinite generalized inverses of the positive semidefinite self-conjugate matrices of quaternions in the Lowner partial ...On the basis of the paoers[3—7],this paper study the monotonicity problems for the positive semidefinite generalized inverses of the positive semidefinite self-conjugate matrices of quaternions in the Lowner partial order,give the explicit formulations of the monotonicity solution sets A{1;≥,T_1;≤B^(1)}and B{1;≥,T_2≥A^(1)}for the(1)-inverse,and two results of the monotonicity charac teriaztion for the(1,2)-inverse.展开更多
In this paper, the authors study reiterated homogenization of nonlinear equations of the form --div(a(x, x/ε x/ε, Duε) = f, where a is periodic in the first two arguments and monotone in the third. It is proved tha...In this paper, the authors study reiterated homogenization of nonlinear equations of the form --div(a(x, x/ε x/ε, Duε) = f, where a is periodic in the first two arguments and monotone in the third. It is proved that ue converges weakly in W1,P(Ω) (and even in some multiscale sense), as ε→ 0 to the solution uo of a limit problem. Moreover, an explicit expression for the limit problem is given. The main results were also stated in [15]. This article presents the complete proofs of these results.展开更多
The authors study homogenization of some nonlinear partial differential equations of the form -div (?(hx, h2x,Duh)) =f, where a is periodic in the first two arguments and monotone in the third. In particular the case ...The authors study homogenization of some nonlinear partial differential equations of the form -div (?(hx, h2x,Duh)) =f, where a is periodic in the first two arguments and monotone in the third. In particular the case where a satisfies degenerated structure conditions is studied. It is proved that uh converges weakly in W01,1 (?) to the unique solution of a limit problem as h ? '. Moreover, explicit expressions for the limit problem are obtained.展开更多
In this paper, a new existence theorem of anti-periodic solutions for a class ofstrongly nonlinear evolution equations in Banach spaces is presented. The equations contain nonlinear monotone operators and a nonmonoton...In this paper, a new existence theorem of anti-periodic solutions for a class ofstrongly nonlinear evolution equations in Banach spaces is presented. The equations contain nonlinear monotone operators and a nonmonotone perturbation. Moreover, throughan appropriate transformation, the existence of anti-periodic solutions for a class of secondorder nonlinear evolution equations is verified. Our abstract results are illustrated by anexample from quasi-linear partial differential equations with time anti-periodic conditionsand an example from quasi-linear anti-periodic hyperbolic differential equations.展开更多
文摘On the basis of the paoers[3—7],this paper study the monotonicity problems for the positive semidefinite generalized inverses of the positive semidefinite self-conjugate matrices of quaternions in the Lowner partial order,give the explicit formulations of the monotonicity solution sets A{1;≥,T_1;≤B^(1)}and B{1;≥,T_2≥A^(1)}for the(1)-inverse,and two results of the monotonicity charac teriaztion for the(1,2)-inverse.
文摘In this paper, the authors study reiterated homogenization of nonlinear equations of the form --div(a(x, x/ε x/ε, Duε) = f, where a is periodic in the first two arguments and monotone in the third. It is proved that ue converges weakly in W1,P(Ω) (and even in some multiscale sense), as ε→ 0 to the solution uo of a limit problem. Moreover, an explicit expression for the limit problem is given. The main results were also stated in [15]. This article presents the complete proofs of these results.
文摘The authors study homogenization of some nonlinear partial differential equations of the form -div (?(hx, h2x,Duh)) =f, where a is periodic in the first two arguments and monotone in the third. In particular the case where a satisfies degenerated structure conditions is studied. It is proved that uh converges weakly in W01,1 (?) to the unique solution of a limit problem as h ? '. Moreover, explicit expressions for the limit problem are obtained.
基金This research is supported by the Science and Technology Committee of Guizhou Province,China(20023002)
文摘In this paper, a new existence theorem of anti-periodic solutions for a class ofstrongly nonlinear evolution equations in Banach spaces is presented. The equations contain nonlinear monotone operators and a nonmonotone perturbation. Moreover, throughan appropriate transformation, the existence of anti-periodic solutions for a class of secondorder nonlinear evolution equations is verified. Our abstract results are illustrated by anexample from quasi-linear partial differential equations with time anti-periodic conditionsand an example from quasi-linear anti-periodic hyperbolic differential equations.