期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于多属性偏好信息集结的复杂网络重要节点辨识 被引量:7
1
作者 胡钢 高浩 徐翔 《浙江理工大学学报(自然科学版)》 2019年第4期482-488,共7页
为了准确辨识复杂网络中的重要节点,避免单一属性指标评价节点重要性出现的偏差,提出了一种基于多属性偏好信息集结的复杂网络重要节点辨识方法。首先根据节点的局部特性、全局特性及空间位置等特性,选取度中心性、介数中心性、紧密度... 为了准确辨识复杂网络中的重要节点,避免单一属性指标评价节点重要性出现的偏差,提出了一种基于多属性偏好信息集结的复杂网络重要节点辨识方法。首先根据节点的局部特性、全局特性及空间位置等特性,选取度中心性、介数中心性、紧密度、结构洞、K-核(Ks)五个属性指标构建多属性复杂网络重要节点辨识模型,对节点属性偏好信息进行分析、集结和融合;然后将网络中所有节点作为评价主体,构建复杂网络多属性决策矩阵,根据熵理论对节点属性赋权,计算其与理想重要节点的贴近度,对节点重要性进行精细化排序。将该模型应用到"风筝网络"和"ARPA网络"中,根据节点重要性辨识结果对网络进行破坏性实验,结果表明,该方法的准确性比已有方法更高。 展开更多
关键词 复杂网络 重要节点辨识 多属性决策 偏好信息集结 结构洞 紧密度
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部