期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
利用多核增强学习的立体图像舒适度评价模型
1
作者 张竹青 邵枫 蒋刚毅 《中国图象图形学报》 CSCD 北大核心 2016年第10期1328-1336,共9页
目的传统的立体视觉舒适度评价模型,在学习阶段一般采用回归算法,且需要大量的包含主观测试数据的训练样本,针对这个问题,提出一种利用多核增强学习分类算法的立体图像舒适度评价模型。方法首先,考虑人们在实际观测图像时,对于先后观测... 目的传统的立体视觉舒适度评价模型,在学习阶段一般采用回归算法,且需要大量的包含主观测试数据的训练样本,针对这个问题,提出一种利用多核增强学习分类算法的立体图像舒适度评价模型。方法首先,考虑人们在实际观测图像时,对于先后观测到的不同图像进行相互比较的情况,将评价模型看成是偏好分类器,构造包含偏好标签的偏好立体图像对(PSIP),构成PSIP训练集;其次,提取多个视差统计特征和神经学模型响应特征;然后,利用基于Ada Boost的多核学习算法来建立偏好标签与特征之间的关系模型,并分析偏好分类概率(即相对舒适度概率)与最终的视觉舒适度之间的映射关系。结果在独立立体图像库上,与现有代表性回归算法相比较,本文算法的Pearson线性相关系数(PLCC)在0.84以上,Spearman等级相关系数(SRCC)在0.80以上,均优于其他模型的各评价指标;而在跨库测试中,本文算法的PLCC、SRCC指标均优于传统的支持向量回归算法。结论相比于传统的回归算法,本文算法具有更好的评价性能,能够更为准确地预测立体图像视觉舒适度。 展开更多
关键词 立体图像 视觉舒适度评价 偏好标签 偏好立体图像对(PSIP) 多核增强学习 偏好分类器
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部