期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于聚类分析策略的用户偏好挖掘 被引量:8
1
作者 刘远超 王晓龙 +1 位作者 刘秉权 钟彬彬 《计算机应用研究》 CSCD 北大核心 2005年第12期21-23,共3页
利用训练文档集准确高效地挖掘隐藏的用户文本偏好和概念向量是文本信息过滤和多文档自动文摘等自然语言处理应用的关键技术之一。针对训练文本集中往往存在多个主题类别的问题,提出一种基于聚类分析策略的文本偏好挖掘方法。其基本思... 利用训练文档集准确高效地挖掘隐藏的用户文本偏好和概念向量是文本信息过滤和多文档自动文摘等自然语言处理应用的关键技术之一。针对训练文本集中往往存在多个主题类别的问题,提出一种基于聚类分析策略的文本偏好挖掘方法。其基本思路是对训练文档集进行聚类处理,然后对同主题文档进行共性分析,并经过特征权值调整和特征约简,获得表示用户不同主题偏好的概念向量。实验结果表明该方法具有对用户的文本偏好刻画更加精确,对相关阈值变化不敏感等优点,可以与Rocchio等算法结合来进行用户兴趣建模。 展开更多
关键词 偏好挖掘:文档 概念向量 Rocchio算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部