提出一种基于偏差信息准则(deriance information criterion,DIC)的鲁棒贝叶斯混合分布模型选择算法.在变分逼近框架下,给出鲁棒贝叶斯混合模型的DIC计算公式;设计的模型选择算法能同时学习模型参数推断和进行模型选择,避免在大的候选...提出一种基于偏差信息准则(deriance information criterion,DIC)的鲁棒贝叶斯混合分布模型选择算法.在变分逼近框架下,给出鲁棒贝叶斯混合模型的DIC计算公式;设计的模型选择算法能同时学习模型参数推断和进行模型选择,避免在大的候选模型集中根据模型选择准则选取最优模型.给出试验参数初始值设置方法,在含有较多离群点的仿真数据和Old Faithful Geyser数据上的试验结果表明了好的性能:得到鲁棒的混合分量参数和较准确的混合分量个数.展开更多
针对国际学生评估项目2015年数据(PISA),采用单参数、双参数和三参数的项目反应模型进行建模,在每个模型下,分别采用logistic连接函数和probit连接函数。针对6个模型,应用偏差信息准则(Deviance Information Criterion,DIC)和伪边际似...针对国际学生评估项目2015年数据(PISA),采用单参数、双参数和三参数的项目反应模型进行建模,在每个模型下,分别采用logistic连接函数和probit连接函数。针对6个模型,应用偏差信息准则(Deviance Information Criterion,DIC)和伪边际似然对数(Logarithm of Pseudo-Marginal Likelihood,LPML)进行模型评价和模型选择。结果表明,当连接函数为logistic双参数的项目反应模型表现最好,因为这个模型下的DIC值最小,并且LPML值最大。我们采用R软件nimble包进行编程。展开更多
文摘提出一种基于偏差信息准则(deriance information criterion,DIC)的鲁棒贝叶斯混合分布模型选择算法.在变分逼近框架下,给出鲁棒贝叶斯混合模型的DIC计算公式;设计的模型选择算法能同时学习模型参数推断和进行模型选择,避免在大的候选模型集中根据模型选择准则选取最优模型.给出试验参数初始值设置方法,在含有较多离群点的仿真数据和Old Faithful Geyser数据上的试验结果表明了好的性能:得到鲁棒的混合分量参数和较准确的混合分量个数.
文摘针对国际学生评估项目2015年数据(PISA),采用单参数、双参数和三参数的项目反应模型进行建模,在每个模型下,分别采用logistic连接函数和probit连接函数。针对6个模型,应用偏差信息准则(Deviance Information Criterion,DIC)和伪边际似然对数(Logarithm of Pseudo-Marginal Likelihood,LPML)进行模型评价和模型选择。结果表明,当连接函数为logistic双参数的项目反应模型表现最好,因为这个模型下的DIC值最小,并且LPML值最大。我们采用R软件nimble包进行编程。