文摘针对主动学习由于初始阶段随机选择样本而导致的抽样偏差,将Sanjoy Dasgupta等人提出的分层聚类采样(Hierarchical sampling,HS)引入到主动学习方法中,替代初始阶段随机样本选择,然后在基于支持向量机分类器的图像算法中引入最优标号和次优标号(Best vs second-best,BvSB)的反馈准则,提出了基于HS和BvSB(HS+BvSB)的多类图像分类方法。分别在两组标准测试数据集上进行分类实验,比较HS+BvSB方法与随机选择样本+BvSB方法的学习性能,结果表明,随着初始选择样本数目的增多,提出的Hs+BvSB方法具有更优的性能。