The idea of the gradient method for integrating the dynamical equations of a nonconservative system presented by Vujanovic is transplanted to a Birkhoffian system, which is a new method for the integration of Birkhoff...The idea of the gradient method for integrating the dynamical equations of a nonconservative system presented by Vujanovic is transplanted to a Birkhoffian system, which is a new method for the integration of Birkhoff's equations. First, the differential equations of motion of the Birkhoffian system are written out. Secondly, 2n Birkhoff's variables are divided into two parts, and assume that a part of the variables is the functions of the remaining part of the variables and time. Thereby, the basic quasi-linear partial differential equations are established. If a complete solution of the basic partial differential equations is sought out, the solution of the problem is given by a set of algebraic equations. Since one can choose n arbitrary Birkhoff's variables as the functions of n remains of variables and time in a specific problem, the method has flexibility. The major difficulty of this method lies in finding a complete solution of the basic partial differential equation. Once one finds the complete solution, the motion of the systems can be obtained without doing further integration. Finally, two examples are given to illustrate the application of the results.展开更多
Due to the fact that the fourth-order partial differential equation (PDE) for noise removal can provide a good trade-off between noise removal and edge preservation and avoid blocky effects often caused by the secon...Due to the fact that the fourth-order partial differential equation (PDE) for noise removal can provide a good trade-off between noise removal and edge preservation and avoid blocky effects often caused by the second-order PDE, a domain-based fourth-order PDE method for noise removal is proposed. First, the proposed method segments the image domain into two domains, a speckle domain and a non-speckle domain, based on the statistical properties of isolated speckles in the Laplacian domain. Then, depending on the domain type, different conductance coefficients in the proposed fourth-order PDE are adopted. Moreover, the frequency approach is used to determine the optimum iteration stopping time. Compared with the existing fourth-order PDEs, the proposed fourth-order PDE can remove isolated speckles and keeps the edges from being blurred. Experimental results show the effectiveness of the proposed method.展开更多
In this paper we discuss the anti-periodic problem for a class of abstractnonlinear second-order evolution equations associated with maximal monotone operators in Hilbertspaces and give some new assumptions on operato...In this paper we discuss the anti-periodic problem for a class of abstractnonlinear second-order evolution equations associated with maximal monotone operators in Hilbertspaces and give some new assumptions on operators. We establish the existence and uniqueness ofanti-periodic solutions, which improve andgeneralize the results that have been obtained. Finally weillustrate the abstract theory by discussing a simple example of an anti-periodic problem fornonlinear partial differential equations.展开更多
To study a class of boundary value problems of parabolic differential equations with deviating arguments, averaging technique, Green’s formula and symbol function sign(·) are used. The multi dimensional problem...To study a class of boundary value problems of parabolic differential equations with deviating arguments, averaging technique, Green’s formula and symbol function sign(·) are used. The multi dimensional problem was reduced to a one dimensional oscillation problem for ordinary differential equations or inequalities. Two oscillatory criteria of solutions for systems of parabolic differential equations with deviating arguments are obtained.展开更多
This paper is concerned with the generalzed global solution and its asymptotic properties for the initial value problem of the partial differential equationu t+u x 3 =F(u).
In this paper, we establish a differential equation about scalar curvature of conformally flat K-contact manifolds, and prove that a conformally symmetric K-contact manifold is a Riemann manifold with constant curvatu...In this paper, we establish a differential equation about scalar curvature of conformally flat K-contact manifolds, and prove that a conformally symmetric K-contact manifold is a Riemann manifold with constant curvature 1. At the same time, the results on Sasaki manifolds which are given by Miyazaawa and Yamagushi are generalized to K-contact manifolds.展开更多
Local mesh refinement is one of the key steps in the implementations of adaptive finite element methods. This paper presents a parallel algorithm for distributed memory parallel computers for adaptive local refinement...Local mesh refinement is one of the key steps in the implementations of adaptive finite element methods. This paper presents a parallel algorithm for distributed memory parallel computers for adaptive local refinement of tetrahedral meshes using bisection. This algorithm is used in PHG, Parallel Hierarchical Grid Chttp://lsec. cc. ac. cn/phg/), a toolbox under active development for parallel adaptive finite element solutions of partial differential equations. The algorithm proposed is characterized by allowing simukaneous refinement of submeshes to arbitrary levels before synchronization between submeshes and without the need of a central coordinator process for managing new vertices. Using the concept of canonical refinement, a simple proof of the independence of the resulting mesh on the mesh partitioning is given, which is useful in better understanding the behaviour of the biseetioning refinement procedure.展开更多
The extended tanh method is further improved by generalizing the Riccati equation and introducing its twenty seven new solutions. As its application, the (2+ 1)-dimensional Broer-Kaup equation is investigated and then...The extended tanh method is further improved by generalizing the Riccati equation and introducing its twenty seven new solutions. As its application, the (2+ 1)-dimensional Broer-Kaup equation is investigated and then its fifty four non-travelling wave solutions have been obtained. The results reported in this paper show that this method is more powerful than those, such as tanh method, extended tanh method, modified extended tanh method and Riccati equation expansion method introduced in previous literatures.展开更多
The main objective of this work is to investigate analytically the steady nanofluid flow and heat transfer characteristics between nonparallel plane walls. Using appropriate transformations for the velocity and temper...The main objective of this work is to investigate analytically the steady nanofluid flow and heat transfer characteristics between nonparallel plane walls. Using appropriate transformations for the velocity and temperature, the basic nonlinear partial differential equations are reduced to the ordinary differential equations. Then, these equations have been solved analytically and numerically for some values of the governing parameters, Reynolds number, Re, channel half angle, α, Prandtl number, Pr, and Eckert number, Ec, using Adomian decomposition method and the Runge-Kutta method with mathematic package. Analytical and numerical results are searched for the skin friction coefficient, Nusselt number and the velocity and temperature profiles. It is found on one hand that the Nusselt number increases as Eckert number or channel half-angle increases, but it decreases as Reynolds number increases. On the other hand, it is also found that the presence of Cu nanoparticles in a water base fluid enhances heat transfer between nonparallel plane walls and in consequence the Nusselt number increases with the increase of nanoparticles volume fraction. Finally, an excellent agreement between analytical results and those obtained by numerical Runge-Kutta method is highly noticed.展开更多
Making use of a new generalized ans?tze and a proper transformation, we generalized the extended tanh-function method. Applying the generalized method with the aid of Maple, we consider some nonlinear evolution equati...Making use of a new generalized ans?tze and a proper transformation, we generalized the extended tanh-function method. Applying the generalized method with the aid of Maple, we consider some nonlinear evolution equations. As a result, we can successfully recover the previously known solitary wave solutions that had been found by the extended tanh-function method and other more sophisticated methods. More importantly, for some equations, we also obtain other new and more general solutions at the same time. The results include kink-profile solitary-wave solutions, bell-profile solitary-wave solutions, periodic wave solutions, rational solutions, singular solutions and new formal solutions.展开更多
Painleve property and infinite symmetries of the (2+1)-dimensional higher-order Broer-Kaup (HBK) system are studied in this paper. Using the modified direct method, we derive the theorem of general symmetry gro.u...Painleve property and infinite symmetries of the (2+1)-dimensional higher-order Broer-Kaup (HBK) system are studied in this paper. Using the modified direct method, we derive the theorem of general symmetry gro.ups to (2+1)-dimensional HBK system. Based on our theorem, some new forms of solutions are obtained. We also find infinite number of conservation laws of the (2+1)-dimensional HBK system.展开更多
Applying the generalized method, which is a direct and unified algebraic method for constructing multipletravelling wave solutions of nonlinear partial differential equations (PDEs), and implementing in a computer alg...Applying the generalized method, which is a direct and unified algebraic method for constructing multipletravelling wave solutions of nonlinear partial differential equations (PDEs), and implementing in a computer algebraicsystem, we consider the generalized Zakharov-Kuzentsov equation with nonlinear terms of any order. As a result, wecan not only successfully recover the previously known travelling wave solutions found by existing various tanh methodsand other sophisticated methods, but also obtain some new formal solutions. The solutions obtained include kink-shapedsolitons, bell-shaped solitons, singular solitons, and periodic solutions.展开更多
Starting from a Backlund transformation and taking a special ansatz for the function f, we can obtain a much more generalexpression of solution that includes some variable separated functions for the higher-order Broe...Starting from a Backlund transformation and taking a special ansatz for the function f, we can obtain a much more generalexpression of solution that includes some variable separated functions for the higher-order Broer-Kaup system. From this expression, we investigate the interactions of localized coherent structures such as the multi-solitonic excitations and find the novel phenomenon that their interactions have non-elastic behavior because the fission/fusion may occur after the interaction of each localized coherent structure.展开更多
The method of Riccati equation is extended for constructing travelling wave solutions of nonlinear partial differential equations. It is applied to solve the Karamoto-Sivashinsky equation and then its more new explici...The method of Riccati equation is extended for constructing travelling wave solutions of nonlinear partial differential equations. It is applied to solve the Karamoto-Sivashinsky equation and then its more new explicit solutions have been obtained. From the results given in this paper, one can see the computer algebra plays an important role in this procedure.展开更多
In this paper, we extend the mapping deformation method proposed by Lou. It is used to find new exacttravelling wave solutions of nonlinear partial differential equation or coupled nonlinear partial differential equat...In this paper, we extend the mapping deformation method proposed by Lou. It is used to find new exacttravelling wave solutions of nonlinear partial differential equation or coupled nonlinear partial differential equations(PDEs). Based on the idea of the homogeneous balance method, we construct the general mapping relation betweenthe solutions of the PDEs and those of the cubic nonlinear Klein-Gordon (NKG) equation. By using this relation andthe abundant solutions of the cubic NKG equation, many explicit and exact travelling wave solutions of three systemsof coupled PDEs, which contain solitary wave solutions, trigonometric function solutions, Jacobian elliptic functionsolutions, and rational solutions, are obtained.展开更多
The direct method proposed by Clarkson and Kruskal is modified to obtain some conditional similarity solutions of a nonlinear physics model. Taking the -dimensional Boussinesq equation as a simple example, six types o...The direct method proposed by Clarkson and Kruskal is modified to obtain some conditional similarity solutions of a nonlinear physics model. Taking the -dimensional Boussinesq equation as a simple example, six types of conditional similarity reductions are obtained.展开更多
Centroidal Voronoi tessellations(CVTs) have become a useful tool in many applications ranging from geometric modeling,image and data analysis,and numerical partial differential equations,to problems in physics,astroph...Centroidal Voronoi tessellations(CVTs) have become a useful tool in many applications ranging from geometric modeling,image and data analysis,and numerical partial differential equations,to problems in physics,astrophysics,chemistry,and biology. In this paper,we briefly review the CVT concept and a few of its generalizations and well-known properties.We then present an overview of recent advances in both mathematical and computational studies and in practical applications of CVTs.Whenever possible,we point out some outstanding issues that still need investigating.展开更多
Under the travelling wave transformation, some nonlinear partial differential equations such as Camassa-Holm equation, High-order KdV equation, etc., are reduced to an integrable ODE expressed by u" +p(u)(u')^2...Under the travelling wave transformation, some nonlinear partial differential equations such as Camassa-Holm equation, High-order KdV equation, etc., are reduced to an integrable ODE expressed by u" +p(u)(u')^2 + q(u) = 0 whose generai solution can be given. Furthermore, combining complete discrimination system for polynomiai, the classifications of all single travelling wave solutions to these equations are obtained. The equation u"+p(u)(u')^2+q(u) = 0 includes the equation (u')^2 = f(u) as a special case, so the proposed method can be also applied to a large number of nonlinear equations. These complete results cannot be obtained by any indirect method.展开更多
基金The National Natural Science Foundation of China(No.10972151)
文摘The idea of the gradient method for integrating the dynamical equations of a nonconservative system presented by Vujanovic is transplanted to a Birkhoffian system, which is a new method for the integration of Birkhoff's equations. First, the differential equations of motion of the Birkhoffian system are written out. Secondly, 2n Birkhoff's variables are divided into two parts, and assume that a part of the variables is the functions of the remaining part of the variables and time. Thereby, the basic quasi-linear partial differential equations are established. If a complete solution of the basic partial differential equations is sought out, the solution of the problem is given by a set of algebraic equations. Since one can choose n arbitrary Birkhoff's variables as the functions of n remains of variables and time in a specific problem, the method has flexibility. The major difficulty of this method lies in finding a complete solution of the basic partial differential equation. Once one finds the complete solution, the motion of the systems can be obtained without doing further integration. Finally, two examples are given to illustrate the application of the results.
基金The National Natural Science Foundation of China(No.60972001)the National Key Technology R&D Program of China during the 11th Five-Year Period(No.2009BAG13A06)
文摘Due to the fact that the fourth-order partial differential equation (PDE) for noise removal can provide a good trade-off between noise removal and edge preservation and avoid blocky effects often caused by the second-order PDE, a domain-based fourth-order PDE method for noise removal is proposed. First, the proposed method segments the image domain into two domains, a speckle domain and a non-speckle domain, based on the statistical properties of isolated speckles in the Laplacian domain. Then, depending on the domain type, different conductance coefficients in the proposed fourth-order PDE are adopted. Moreover, the frequency approach is used to determine the optimum iteration stopping time. Compared with the existing fourth-order PDEs, the proposed fourth-order PDE can remove isolated speckles and keeps the edges from being blurred. Experimental results show the effectiveness of the proposed method.
文摘In this paper we discuss the anti-periodic problem for a class of abstractnonlinear second-order evolution equations associated with maximal monotone operators in Hilbertspaces and give some new assumptions on operators. We establish the existence and uniqueness ofanti-periodic solutions, which improve andgeneralize the results that have been obtained. Finally weillustrate the abstract theory by discussing a simple example of an anti-periodic problem fornonlinear partial differential equations.
文摘To study a class of boundary value problems of parabolic differential equations with deviating arguments, averaging technique, Green’s formula and symbol function sign(·) are used. The multi dimensional problem was reduced to a one dimensional oscillation problem for ordinary differential equations or inequalities. Two oscillatory criteria of solutions for systems of parabolic differential equations with deviating arguments are obtained.
文摘This paper is concerned with the generalzed global solution and its asymptotic properties for the initial value problem of the partial differential equationu t+u x 3 =F(u).
文摘In this paper, we establish a differential equation about scalar curvature of conformally flat K-contact manifolds, and prove that a conformally symmetric K-contact manifold is a Riemann manifold with constant curvature 1. At the same time, the results on Sasaki manifolds which are given by Miyazaawa and Yamagushi are generalized to K-contact manifolds.
基金supported by the 973 Program of China 2005CB321702China NSF 10531080.
文摘Local mesh refinement is one of the key steps in the implementations of adaptive finite element methods. This paper presents a parallel algorithm for distributed memory parallel computers for adaptive local refinement of tetrahedral meshes using bisection. This algorithm is used in PHG, Parallel Hierarchical Grid Chttp://lsec. cc. ac. cn/phg/), a toolbox under active development for parallel adaptive finite element solutions of partial differential equations. The algorithm proposed is characterized by allowing simukaneous refinement of submeshes to arbitrary levels before synchronization between submeshes and without the need of a central coordinator process for managing new vertices. Using the concept of canonical refinement, a simple proof of the independence of the resulting mesh on the mesh partitioning is given, which is useful in better understanding the behaviour of the biseetioning refinement procedure.
文摘The extended tanh method is further improved by generalizing the Riccati equation and introducing its twenty seven new solutions. As its application, the (2+ 1)-dimensional Broer-Kaup equation is investigated and then its fifty four non-travelling wave solutions have been obtained. The results reported in this paper show that this method is more powerful than those, such as tanh method, extended tanh method, modified extended tanh method and Riccati equation expansion method introduced in previous literatures.
文摘The main objective of this work is to investigate analytically the steady nanofluid flow and heat transfer characteristics between nonparallel plane walls. Using appropriate transformations for the velocity and temperature, the basic nonlinear partial differential equations are reduced to the ordinary differential equations. Then, these equations have been solved analytically and numerically for some values of the governing parameters, Reynolds number, Re, channel half angle, α, Prandtl number, Pr, and Eckert number, Ec, using Adomian decomposition method and the Runge-Kutta method with mathematic package. Analytical and numerical results are searched for the skin friction coefficient, Nusselt number and the velocity and temperature profiles. It is found on one hand that the Nusselt number increases as Eckert number or channel half-angle increases, but it decreases as Reynolds number increases. On the other hand, it is also found that the presence of Cu nanoparticles in a water base fluid enhances heat transfer between nonparallel plane walls and in consequence the Nusselt number increases with the increase of nanoparticles volume fraction. Finally, an excellent agreement between analytical results and those obtained by numerical Runge-Kutta method is highly noticed.
文摘Making use of a new generalized ans?tze and a proper transformation, we generalized the extended tanh-function method. Applying the generalized method with the aid of Maple, we consider some nonlinear evolution equations. As a result, we can successfully recover the previously known solitary wave solutions that had been found by the extended tanh-function method and other more sophisticated methods. More importantly, for some equations, we also obtain other new and more general solutions at the same time. The results include kink-profile solitary-wave solutions, bell-profile solitary-wave solutions, periodic wave solutions, rational solutions, singular solutions and new formal solutions.
基金The project supported by the Natural Science Foundation of Shandong Province of China under Grant No. 2004 zx 16
文摘Painleve property and infinite symmetries of the (2+1)-dimensional higher-order Broer-Kaup (HBK) system are studied in this paper. Using the modified direct method, we derive the theorem of general symmetry gro.ups to (2+1)-dimensional HBK system. Based on our theorem, some new forms of solutions are obtained. We also find infinite number of conservation laws of the (2+1)-dimensional HBK system.
基金The project supported by National Natural Science Foundation of China under Grant No.10072013the National Key Basic Research Development Program under Grant No.G1998030600
文摘Applying the generalized method, which is a direct and unified algebraic method for constructing multipletravelling wave solutions of nonlinear partial differential equations (PDEs), and implementing in a computer algebraicsystem, we consider the generalized Zakharov-Kuzentsov equation with nonlinear terms of any order. As a result, wecan not only successfully recover the previously known travelling wave solutions found by existing various tanh methodsand other sophisticated methods, but also obtain some new formal solutions. The solutions obtained include kink-shapedsolitons, bell-shaped solitons, singular solitons, and periodic solutions.
文摘Starting from a Backlund transformation and taking a special ansatz for the function f, we can obtain a much more generalexpression of solution that includes some variable separated functions for the higher-order Broer-Kaup system. From this expression, we investigate the interactions of localized coherent structures such as the multi-solitonic excitations and find the novel phenomenon that their interactions have non-elastic behavior because the fission/fusion may occur after the interaction of each localized coherent structure.
文摘The method of Riccati equation is extended for constructing travelling wave solutions of nonlinear partial differential equations. It is applied to solve the Karamoto-Sivashinsky equation and then its more new explicit solutions have been obtained. From the results given in this paper, one can see the computer algebra plays an important role in this procedure.
文摘In this paper, we extend the mapping deformation method proposed by Lou. It is used to find new exacttravelling wave solutions of nonlinear partial differential equation or coupled nonlinear partial differential equations(PDEs). Based on the idea of the homogeneous balance method, we construct the general mapping relation betweenthe solutions of the PDEs and those of the cubic nonlinear Klein-Gordon (NKG) equation. By using this relation andthe abundant solutions of the cubic NKG equation, many explicit and exact travelling wave solutions of three systemsof coupled PDEs, which contain solitary wave solutions, trigonometric function solutions, Jacobian elliptic functionsolutions, and rational solutions, are obtained.
文摘The direct method proposed by Clarkson and Kruskal is modified to obtain some conditional similarity solutions of a nonlinear physics model. Taking the -dimensional Boussinesq equation as a simple example, six types of conditional similarity reductions are obtained.
基金supported by the US Department of Energy Office of Science Climate Change Prediction Program through grant numbers DE-FG02-07ER64431 and DE-FG02-07ER64432the US National Science Foundation under grant numbers DMS-0609575 and DMS-0913491
文摘Centroidal Voronoi tessellations(CVTs) have become a useful tool in many applications ranging from geometric modeling,image and data analysis,and numerical partial differential equations,to problems in physics,astrophysics,chemistry,and biology. In this paper,we briefly review the CVT concept and a few of its generalizations and well-known properties.We then present an overview of recent advances in both mathematical and computational studies and in practical applications of CVTs.Whenever possible,we point out some outstanding issues that still need investigating.
文摘Under the travelling wave transformation, some nonlinear partial differential equations such as Camassa-Holm equation, High-order KdV equation, etc., are reduced to an integrable ODE expressed by u" +p(u)(u')^2 + q(u) = 0 whose generai solution can be given. Furthermore, combining complete discrimination system for polynomiai, the classifications of all single travelling wave solutions to these equations are obtained. The equation u"+p(u)(u')^2+q(u) = 0 includes the equation (u')^2 = f(u) as a special case, so the proposed method can be also applied to a large number of nonlinear equations. These complete results cannot be obtained by any indirect method.