研究了一类具非线性扩散系数和阻尼项的双曲型偏微分方程系统2ui(x,t)/t2+m(t)ui(x,t)/t=ai(t)hi(ui)Δui+sum from j=1 to n aij(t)hij(ui(x,t-τj(t)))Δui(x,t-τj(t))-sum from k=1 to m bik(x,t)uk(x,t-σ(t))(x,t)∈Ω...研究了一类具非线性扩散系数和阻尼项的双曲型偏微分方程系统2ui(x,t)/t2+m(t)ui(x,t)/t=ai(t)hi(ui)Δui+sum from j=1 to n aij(t)hij(ui(x,t-τj(t)))Δui(x,t-τj(t))-sum from k=1 to m bik(x,t)uk(x,t-σ(t))(x,t)∈Ω×R+≡G,i=1,2,…m,获得了该方程组在Robin边值条件下解振动的充分条件。展开更多
基金Project supported by the Natural Science Foundation of China(No.60572093)Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20050004016)NSFC-KOSEF Joint Research Project and IITA Professorship Program of Gwangju Instiute of Science and Technology
文摘研究了一类具非线性扩散系数和阻尼项的双曲型偏微分方程系统2ui(x,t)/t2+m(t)ui(x,t)/t=ai(t)hi(ui)Δui+sum from j=1 to n aij(t)hij(ui(x,t-τj(t)))Δui(x,t-τj(t))-sum from k=1 to m bik(x,t)uk(x,t-σ(t))(x,t)∈Ω×R+≡G,i=1,2,…m,获得了该方程组在Robin边值条件下解振动的充分条件。