In order to characterize various micromorphologic properties of two forest soils derived from different parent rocks in Lahijan, and use the data collected from micromorphological analysis to interpret dominant pedoge...In order to characterize various micromorphologic properties of two forest soils derived from different parent rocks in Lahijan, and use the data collected from micromorphological analysis to interpret dominant pedogenic processes. Two representative soil pedons, granite (P1) and andesitic basalt (P2) were selected in a mountain landform with northwest aspect. Samples for thin section preparation were taken from each horizon by Kubiena boxes or clods. Micromorphological analysis of soils derived from these two soil pedons in eastern part of Lahijan (northern Iran) were conducted based on the physicochemical and mineralogical data. Micromorphological properties were characterized using a polarized light microscope under plain and cross light. Thin section study indicated that the nature of the parent material clearly affected the content of clay formation. It also showed that clay accumulation in the Bt horizons was not only due to clay illuviation (argillan), but that strong in situ weathering of primary minerals also contributed to the enrichment of clay in soils derived from andesitic basalt. Comparing the results of clay mineralogy obtained from X-ray diffraction (XRD) with microscopic studies revealed that birefringence fabric (b-fabric) of the groundmass was partly striated due to smectitic minerals in soil of andesitic basalt (Hapludalf), whereas speckled birefringence fabric was dominant in soil of granite (Udorthent) because of the absence of these minerals. We speculate that pores of skeletal fragments or microcracks in P1 were a place for illuvial clay protection. However, the main factor for flluvial clay film disruption (striation anddeformation) was biological activity (faunal turbation and root pressure) in P1 and expandable minerals and faunal turbation in P2.展开更多
Objective: Peroxisome proliferator-activated receptor -γ(PPAR-γ) plays a critical role in adipocyte differentiation and the development of type 2 diabetes mellitus (T2DM). Numerous studies across several populations...Objective: Peroxisome proliferator-activated receptor -γ(PPAR-γ) plays a critical role in adipocyte differentiation and the development of type 2 diabetes mellitus (T2DM). Numerous studies across several populations have indicated that Pro12Ala polymorphism of PPAR-γ is associated with decreased insulin resistance and decreased risk of T2DM. The aims of this study are to develop a simple and sensitive detection of Pro12Ala polymorphism and examined the distribution of this polymorphism in Chinese population. Methods: The PPAR-γ gene fragment containing Pro12Ala variant of 101 T2DM patients and 104 controls were amplified by PCR amplification and the extension reaction was performed using primer that adjacent to the single nucleotide polymorphic site in presence of two different dye-labeled terminators. The primer's specially extending reactions make the increase of their fluorescence polarization (FP) that mean special genotype. The variant frequencies of the two groups were compared. Results: We detected the Pro12Ala variant successfully by TDI-FP method and we found no significant association between this polymorphism and T2DM in case-control study. Conclusion: The TDI-FP technology is a new specific and sensitive method that is suitable for automatic detection of large number of clinical samples. Prol2Ala mutation in PPAR--@2 gene does not play a significant role in T2DM risk in Chinese population.展开更多
We propose a probabilistic scheme for realizing teleportation of bipartite photonic states using linear optical elements where only requires a two-photon Bell state used as quantum channel. It reduces the requirement ...We propose a probabilistic scheme for realizing teleportation of bipartite photonic states using linear optical elements where only requires a two-photon Bell state used as quantum channel. It reduces the requirement of the entanglement of quantum channel, but requires an additional photon and an auxiliary maximally entangled photon pair locally.展开更多
In this letter,a new polarization state generator(PSG) is presented,which can generate an output with arbitrary state of polarization(SOP).This PSG consists of a linear polarizer,a rotatable quarter-waveplate,and a ro...In this letter,a new polarization state generator(PSG) is presented,which can generate an output with arbitrary state of polarization(SOP).This PSG consists of a linear polarizer,a rotatable quarter-waveplate,and a rotatable half-waveplate.The PSG can be used to study the polarization-related effects on optical components and on optical fiber communication systems.展开更多
In this letter, we propose a scheme of a special quantum optical Fredkin gate assisted by optical manip- ulations and postselection from the coincidence measurements, and then modify it with cross-Kerr nonlinearities ...In this letter, we propose a scheme of a special quantum optical Fredkin gate assisted by optical manip- ulations and postselection from the coincidence measurements, and then modify it with cross-Kerr nonlinearities to be suitable for the realization of all possible positive operator-valued measurements of bipartite polarization states. This scheme is feasible in the lab with the current experimental technology.展开更多
We propose a novel quantum key distribution scheme by using the SAM-OAM hybrid entangled state as the physical resource.To obtain this state,the polarization entangled photon pairs are created by the spontaneous param...We propose a novel quantum key distribution scheme by using the SAM-OAM hybrid entangled state as the physical resource.To obtain this state,the polarization entangled photon pairs are created by the spontaneous parametric down conversion process,and then,the q-plate acts as a SAM-to-OAM transverter to transform the polarization entangled pairs into the hybrid entangled pattern,which opens the possibility to exploit the features of the higher-dimensional space of OAM state to encode information.In the manipulation and encoding process,Alice performs the SAM measurement by modulating the polarization stateπ lθx on one photon,whereas Bob modulates the OAM sector state lx' on the other photon to encode his key elements using the designed holograms which is implemented by the computer-controlled SLM.With coincidence measurement,Alice could extract the key information.It is showed that N-based keys can be encoded with each pair of entangled photon,and this scheme is robust against Eve’s individual attack.Also,the MUBs are not used.Alice and Bob do not need the classical communication for the key recovery.展开更多
We propose a novel optical polarizer based on an asymmetric dual-core photonic crystal fiber(PCF) with triangular lattice air-holes.The fiber is designed as that the effective indices of modes in the two cores are mat...We propose a novel optical polarizer based on an asymmetric dual-core photonic crystal fiber(PCF) with triangular lattice air-holes.The fiber is designed as that the effective indices of modes in the two cores are matched at one polarized state but mismatched at another polarized state.As a result,one of the polarization states is coupled to the other core and transferred into a high-order mode.The transmission properties of the polarizer are investigated by the semi-vectorial beam propagation method(SV-BPM).Numerical results demonstrate that a device length of 11.3 mm shows extinction ratio as low as-20 dB with bandwidth as great as 80 nm ranging from 1.51 mm to 1.59 mm.展开更多
To solve the problems encountered in practical processes of magneto-optical sensing, the infinitesimal distributed-parameter model and finite-element accumulation of different dielectric properties of micromaterials w...To solve the problems encountered in practical processes of magneto-optical sensing, the infinitesimal distributed-parameter model and finite-element accumulation of different dielectric properties of micromaterials were used to describe the evolution of light polarization states, instead of the previously commonly used method of lumped-parameter simulation, thus essentially explaining the mechanism of sensing, magneto-optical effects, and related factors, and achieving multiphysics coupling using the COMSOL finite-element analysis method. Considering the cases of the Faraday effect without and with line birefringence, the magneto-optical effect and output characteristics of an infinitesimal magneto-optical sensor were simulated and studied. The results verified the effectiveness of the infinitesimal sensor model. Because the magnetic field, stress, and temperature changes alter the dielectric properties of magneto-optical materials, the finite-element accumulation method lays a good foundation for research on theoretical analysis and performance of magneto-optical sensors affected by factors such as the magnetic field, temperature, and stress.展开更多
This paper reviews distributed discrimination of strain and temperature by use of an optical fiber based on fiber optic nerve systems. The preliminary method based on multiple resonance peaks of the Brillouin gain spe...This paper reviews distributed discrimination of strain and temperature by use of an optical fiber based on fiber optic nerve systems. The preliminary method based on multiple resonance peaks of the Brillouin gain spectrum in a specially-designed fiber is firstly introduced. The complete discrimination of strain and temperature based on the Brillouin dynamic grating in a polarization maintaining fiber is extensively presented. The basic principle and two experimental schemes of distributed discrimination based on fiber optic nerve systems are demonstrated. The performance of the high discriminative accuracy (0.1 ~C-0.3 ~C and 5 kte-12~te) and high spatial resolution (-10 cm) with the effective measurement points of about 50 for a standard system configuration or about 1000 for a modified one will be highly expected in real industry applications.展开更多
We present an original self-error-rejecting photonic qubit transmission scheme for both the polarization and spatial states of photon systems transmitted over collective noise channels. In our scheme, we use simple li...We present an original self-error-rejecting photonic qubit transmission scheme for both the polarization and spatial states of photon systems transmitted over collective noise channels. In our scheme, we use simple linear-optical elements, including half-wave plates, 50:50 beam splitters, and polarization beam splitters, to convert spatial-polarization modes into different time bins. By using postselection in different time bins, the success probability of obtaining the uncorrupted states approaches 1/4 for singlephoton transmission, which is not influenced by the coefficients of noisy channels. Our self-error-rejecting transmission scheme can be generalized to hyperentangled n-photon systems and is useful in practical high-capacity quantum communications with photon systems in two degrees of freedom.展开更多
基金supported by the Soil Science department, faculty of Agriculture,University of Guilan
文摘In order to characterize various micromorphologic properties of two forest soils derived from different parent rocks in Lahijan, and use the data collected from micromorphological analysis to interpret dominant pedogenic processes. Two representative soil pedons, granite (P1) and andesitic basalt (P2) were selected in a mountain landform with northwest aspect. Samples for thin section preparation were taken from each horizon by Kubiena boxes or clods. Micromorphological analysis of soils derived from these two soil pedons in eastern part of Lahijan (northern Iran) were conducted based on the physicochemical and mineralogical data. Micromorphological properties were characterized using a polarized light microscope under plain and cross light. Thin section study indicated that the nature of the parent material clearly affected the content of clay formation. It also showed that clay accumulation in the Bt horizons was not only due to clay illuviation (argillan), but that strong in situ weathering of primary minerals also contributed to the enrichment of clay in soils derived from andesitic basalt. Comparing the results of clay mineralogy obtained from X-ray diffraction (XRD) with microscopic studies revealed that birefringence fabric (b-fabric) of the groundmass was partly striated due to smectitic minerals in soil of andesitic basalt (Hapludalf), whereas speckled birefringence fabric was dominant in soil of granite (Udorthent) because of the absence of these minerals. We speculate that pores of skeletal fragments or microcracks in P1 were a place for illuvial clay protection. However, the main factor for flluvial clay film disruption (striation anddeformation) was biological activity (faunal turbation and root pressure) in P1 and expandable minerals and faunal turbation in P2.
文摘Objective: Peroxisome proliferator-activated receptor -γ(PPAR-γ) plays a critical role in adipocyte differentiation and the development of type 2 diabetes mellitus (T2DM). Numerous studies across several populations have indicated that Pro12Ala polymorphism of PPAR-γ is associated with decreased insulin resistance and decreased risk of T2DM. The aims of this study are to develop a simple and sensitive detection of Pro12Ala polymorphism and examined the distribution of this polymorphism in Chinese population. Methods: The PPAR-γ gene fragment containing Pro12Ala variant of 101 T2DM patients and 104 controls were amplified by PCR amplification and the extension reaction was performed using primer that adjacent to the single nucleotide polymorphic site in presence of two different dye-labeled terminators. The primer's specially extending reactions make the increase of their fluorescence polarization (FP) that mean special genotype. The variant frequencies of the two groups were compared. Results: We detected the Pro12Ala variant successfully by TDI-FP method and we found no significant association between this polymorphism and T2DM in case-control study. Conclusion: The TDI-FP technology is a new specific and sensitive method that is suitable for automatic detection of large number of clinical samples. Prol2Ala mutation in PPAR--@2 gene does not play a significant role in T2DM risk in Chinese population.
基金The project supported by the Natural Science Foundation of the Education Department of Anhui Province of China under Grant Nos. 2006KJ070A, 2006KJ057B, and the Talent Foundation of Anhui University.
文摘We propose a probabilistic scheme for realizing teleportation of bipartite photonic states using linear optical elements where only requires a two-photon Bell state used as quantum channel. It reduces the requirement of the entanglement of quantum channel, but requires an additional photon and an auxiliary maximally entangled photon pair locally.
基金Supported by State"10-5"Project :"40 Gb/s SDH(STM-256)Optical Fiber Communications Equipments and Systems"( No.2002BA106B07-5)
文摘In this letter,a new polarization state generator(PSG) is presented,which can generate an output with arbitrary state of polarization(SOP).This PSG consists of a linear polarizer,a rotatable quarter-waveplate,and a rotatable half-waveplate.The PSG can be used to study the polarization-related effects on optical components and on optical fiber communication systems.
基金supported by the Research Projects of Huaqiao University under Grant No.07BS406
文摘In this letter, we propose a scheme of a special quantum optical Fredkin gate assisted by optical manip- ulations and postselection from the coincidence measurements, and then modify it with cross-Kerr nonlinearities to be suitable for the realization of all possible positive operator-valued measurements of bipartite polarization states. This scheme is feasible in the lab with the current experimental technology.
基金supported by the National Cryptography Development Foundation of China(Grant No.MMJJ201401011)the Science and Technology Program of Guangzhou,China(Grant Nos.2013J4500095 and 2014J4100050)
文摘We propose a novel quantum key distribution scheme by using the SAM-OAM hybrid entangled state as the physical resource.To obtain this state,the polarization entangled photon pairs are created by the spontaneous parametric down conversion process,and then,the q-plate acts as a SAM-to-OAM transverter to transform the polarization entangled pairs into the hybrid entangled pattern,which opens the possibility to exploit the features of the higher-dimensional space of OAM state to encode information.In the manipulation and encoding process,Alice performs the SAM measurement by modulating the polarization stateπ lθx on one photon,whereas Bob modulates the OAM sector state lx' on the other photon to encode his key elements using the designed holograms which is implemented by the computer-controlled SLM.With coincidence measurement,Alice could extract the key information.It is showed that N-based keys can be encoded with each pair of entangled photon,and this scheme is robust against Eve’s individual attack.Also,the MUBs are not used.Alice and Bob do not need the classical communication for the key recovery.
基金supported by the National Natural Science Foundation of China (No.10904051)the China Postdoctoral Science Foundation (Nos.20080441070 and 200902505) the Jiangsu Planned Projects for Postdoctoral Research Funds (No.0802018B)
文摘We propose a novel optical polarizer based on an asymmetric dual-core photonic crystal fiber(PCF) with triangular lattice air-holes.The fiber is designed as that the effective indices of modes in the two cores are matched at one polarized state but mismatched at another polarized state.As a result,one of the polarization states is coupled to the other core and transferred into a high-order mode.The transmission properties of the polarizer are investigated by the semi-vectorial beam propagation method(SV-BPM).Numerical results demonstrate that a device length of 11.3 mm shows extinction ratio as low as-20 dB with bandwidth as great as 80 nm ranging from 1.51 mm to 1.59 mm.
基金supported by the National Natural Science Foundation of China(Grant No.51277066)
文摘To solve the problems encountered in practical processes of magneto-optical sensing, the infinitesimal distributed-parameter model and finite-element accumulation of different dielectric properties of micromaterials were used to describe the evolution of light polarization states, instead of the previously commonly used method of lumped-parameter simulation, thus essentially explaining the mechanism of sensing, magneto-optical effects, and related factors, and achieving multiphysics coupling using the COMSOL finite-element analysis method. Considering the cases of the Faraday effect without and with line birefringence, the magneto-optical effect and output characteristics of an infinitesimal magneto-optical sensor were simulated and studied. The results verified the effectiveness of the infinitesimal sensor model. Because the magnetic field, stress, and temperature changes alter the dielectric properties of magneto-optical materials, the finite-element accumulation method lays a good foundation for research on theoretical analysis and performance of magneto-optical sensors affected by factors such as the magnetic field, temperature, and stress.
文摘This paper reviews distributed discrimination of strain and temperature by use of an optical fiber based on fiber optic nerve systems. The preliminary method based on multiple resonance peaks of the Brillouin gain spectrum in a specially-designed fiber is firstly introduced. The complete discrimination of strain and temperature based on the Brillouin dynamic grating in a polarization maintaining fiber is extensively presented. The basic principle and two experimental schemes of distributed discrimination based on fiber optic nerve systems are demonstrated. The performance of the high discriminative accuracy (0.1 ~C-0.3 ~C and 5 kte-12~te) and high spatial resolution (-10 cm) with the effective measurement points of about 50 for a standard system configuration or about 1000 for a modified one will be highly expected in real industry applications.
基金supported by the National Natural Science Foundation of China(Grant Nos.61675028,and 11674033)the Fundamental Research Funds for the Central Universities(Grant No.2015KJJCA01)and the National High Technology Research and Development Program of China(Grant No.2013AA122902)
文摘We present an original self-error-rejecting photonic qubit transmission scheme for both the polarization and spatial states of photon systems transmitted over collective noise channels. In our scheme, we use simple linear-optical elements, including half-wave plates, 50:50 beam splitters, and polarization beam splitters, to convert spatial-polarization modes into different time bins. By using postselection in different time bins, the success probability of obtaining the uncorrupted states approaches 1/4 for singlephoton transmission, which is not influenced by the coefficients of noisy channels. Our self-error-rejecting transmission scheme can be generalized to hyperentangled n-photon systems and is useful in practical high-capacity quantum communications with photon systems in two degrees of freedom.