The Zhangjiakou-Bohai Sea seismic belt is an important seismic zone in North China. The direction of principal compressive stress is near EW in this region. According to digital seismic data from the Capital Region fr...The Zhangjiakou-Bohai Sea seismic belt is an important seismic zone in North China. The direction of principal compressive stress is near EW in this region. According to digital seismic data from the Capital Region from September 2005 to September 2010,and using the SAM method,the spatial distribution of the crust anisotropy characteristics are studied and discussed in the middle-eastern part of the Zhangjiakou-Bohai Sea seismic belt. The principal polarization direction,which is near EW direction,is obvious in the middleeastern Zhangjiakou-Bohai Sea seismic belt. The spatial distribution of polarization direction crossing the Zhangjiakou-Bohai Sea seismic belt shows that there is little difference among the Yanshan uplift area,inside of the seismic zone and North China basin,and the principal polarization direction is near EW.展开更多
Shear wave splitting is studied based on the digital waveforms of three seismic stations DJS, SZD and WUJ, which were set up after the Jiujiang-Ruichang MS5.7 earthquake of November 26, 2005 around the epicenter area....Shear wave splitting is studied based on the digital waveforms of three seismic stations DJS, SZD and WUJ, which were set up after the Jiujiang-Ruichang MS5.7 earthquake of November 26, 2005 around the epicenter area. The result shows that the time delays of slow shear waves of the DJS station, which is not far from the epicenter and where the distribution of faults is complex near the station, are relatively larger and the polarization directions of fast shear waves are not concentrated; the predominant polarization direction of fast shear waves of WUJ station, with single fault distributed nearby, has a difference of 35° to the strike of the fault and is inconsistent with the direction of regional principal compressive stress. The predominant polarization direction of fast shear waves of SZD station with no faults nearby is in accordance with regional principal compressive stress. There is no obvious regular relationshipship between the delay time and the focal depth.展开更多
基金funded by the Special Fund for Basic Research and Operating Expenses of Institute of Earthquake Science,CEA(2009-11)Key Project of International Science and Technology Cooperation and Exchange of Ministry of Science and Technology of the People's Republic os China(2010DFB20190)
文摘The Zhangjiakou-Bohai Sea seismic belt is an important seismic zone in North China. The direction of principal compressive stress is near EW in this region. According to digital seismic data from the Capital Region from September 2005 to September 2010,and using the SAM method,the spatial distribution of the crust anisotropy characteristics are studied and discussed in the middle-eastern part of the Zhangjiakou-Bohai Sea seismic belt. The principal polarization direction,which is near EW direction,is obvious in the middleeastern Zhangjiakou-Bohai Sea seismic belt. The spatial distribution of polarization direction crossing the Zhangjiakou-Bohai Sea seismic belt shows that there is little difference among the Yanshan uplift area,inside of the seismic zone and North China basin,and the principal polarization direction is near EW.
基金sponsored by the China Spark Program of Earthquake Science and Technology(XH12027)the Three-Combination Topics of China Earthquake Administration of"Research on the Crustal Medium Anisotropy in the Jiujiang-Ruichang Earthquake Area"the Special Fund of Seismic Industry Research(201008007)
文摘Shear wave splitting is studied based on the digital waveforms of three seismic stations DJS, SZD and WUJ, which were set up after the Jiujiang-Ruichang MS5.7 earthquake of November 26, 2005 around the epicenter area. The result shows that the time delays of slow shear waves of the DJS station, which is not far from the epicenter and where the distribution of faults is complex near the station, are relatively larger and the polarization directions of fast shear waves are not concentrated; the predominant polarization direction of fast shear waves of WUJ station, with single fault distributed nearby, has a difference of 35° to the strike of the fault and is inconsistent with the direction of regional principal compressive stress. The predominant polarization direction of fast shear waves of SZD station with no faults nearby is in accordance with regional principal compressive stress. There is no obvious regular relationshipship between the delay time and the focal depth.