In this paper,wavefield storage optimization strategies are discussed with respect to reverse-time migration(RTM)imaging in reflection-acoustic logging,considering the problem of massive wavefield data storage in RTM ...In this paper,wavefield storage optimization strategies are discussed with respect to reverse-time migration(RTM)imaging in reflection-acoustic logging,considering the problem of massive wavefield data storage in RTM itself.In doing so,two optimization methods are proposed and implemented to avoid wavefield storage.Firstly,the RTM based on the excitation-amplitude imaging condition uses the excitation time to judge the imaging time,and accordingly,we only need to store a small part of wavefield,such as the wavefield data of dozens of time points,the instances prove that they can even be imaged by only two time points.The traditional RTM usually needs to store the wavefield data of thousands of time points,compared with which the data storage can be reduced by tens or even thousands of times.Secondly,the RTM based on the random boundary uses the idea that the wavefield scatters rather than reflects in a random medium to reconstruct the wavefield source and thereby directly avoid storing the forward wavefield data.Numerical examples show that compared with other migration algorithms and the traditional RTM,both methods can effectively reduce wavefield data storage as well as improve data-processing efficiency while ensuring imaging accuracy,thereby providing the means for high-efficiency and highprecision imaging of fractures and caves by boreholes.展开更多
The effects of exciton-optical phonon interaction on the binding energy and the total and reduced effective masses of an exciton in a cylindrical quantum wire have been investigated. We adopt a perturbative-PLL [T.D. ...The effects of exciton-optical phonon interaction on the binding energy and the total and reduced effective masses of an exciton in a cylindrical quantum wire have been investigated. We adopt a perturbative-PLL [T.D. Lee,F. Low, and D. Pines, Phys. Rev. B90 (1953) 297] technique to construct an effective Hamiltonian and then use a variational solution to deal with the exciton-phonon system. The interactions of exciton with the longitudinal-optical phonon and the surface-optical phonon have been taken into consideration. The numerical calculations for GaAs show that the influences of phonon modes on the exciton in a quasi-one-dimensional quantum wire are considerable and should not be neglected. Moreover the numerical results for heavy- and light-hole exciton are obtained, which show that the polaronic effects on two types of excitons are very different but both depend heavily on the sizes of the wire.展开更多
It has been known that the static polarizability of a polymer chain with a biexciton is negative. In order to understand this peculiar fact, this paper studies the dynamical process of the charge transfer in the polym...It has been known that the static polarizability of a polymer chain with a biexciton is negative. In order to understand this peculiar fact, this paper studies the dynamical process of the charge transfer in the polymer chain induced by an external electric held E during forming the biexciton. The time dependence of the charge distribution in the chain reveals that the charge transfer is backward: the positive charge shifts in the opposite direction of the external electric field. Such a backward charge transfer (BCT) produces an opposite dipole, which makes the polarization negative. The effect of electron interaction on the BCT is illustrated.展开更多
The principle of optical trapping is conventionally based on the interaction of optical fields with linear-induced polarizations. However, the optical force originating from the nonlinear polarization becomes signific...The principle of optical trapping is conventionally based on the interaction of optical fields with linear-induced polarizations. However, the optical force originating from the nonlinear polarization becomes significant when nonlinear optical nanoparticles are trapped by femtosecond laser pulses. Herein we develop the time-averaged optical forces on a nonlinear optical nanoparticle using high-repetition-rate femtosecond laser pulses, based on the linear and nonlinear polarization effects. We investigate the dependence of the optical forces on the magnitudes and signs of the refractive nonlinearities. It is found that the self-focusing effect enhances the trapping ability, whereas the self-defocusing effect leads to the splitting of the potential well at the focal plane and destabilizes the optical trap. Our results show good agreement with the reported experimental observations and provide theoretical support for capturing nonlinear optical particles.展开更多
Manipulation of spontaneous emission from an atom confined in three kinds of modified reservoirs has been investigated by means of an elliptically polarized laser field. Some interesting phenomena such as the multi-pe...Manipulation of spontaneous emission from an atom confined in three kinds of modified reservoirs has been investigated by means of an elliptically polarized laser field. Some interesting phenomena such as the multi-peak structure, extreme spectral narrowing, and cancellation of spontaneous emission can be observed by adjusting controllable system parameters. Moreover, these phenomena depend on the constructive or destructive quantum interference between multiple decay channels and which can be changed appreciably by varying the phase difference between the two circularly polarized components of the probe field. These results demonstrate the importance of an elliptially polarized laser field in controlling the spontaneous emission and its potential applications in high-precision spectroscopy.展开更多
文摘偏振激发能量色散X 射线荧光光谱(P-EDXRF)技术是20 世纪末出现的新分析技术。国内采用X -Lab2000 型仪器的初步研究表明,在总计数时间为600 秒时,可以对近 30 种元素进行定量,检出限为 0.5 -30 μg/g ,与国际上发表的文献值基本一致。本工作通过约 100 个实际样品分析,并与波长色散 X 射线荧光法(WDXRF)分析结果的比较,对 P-EDXRF 的分析性能进行了评价。与 WDXRF 相比,P-EDXRF 法具有分析速度快、设备购置费用低、运行成本低、全谱同时采集(有利于发现元素含量异常)等优点,因此特别适合地球化学填图样品的快速分析。而 W D X R F 在精度要求较高的分析中更具竞争力。
基金supported by CNPC scientific research and technology development projects(No.2016A-3605)
文摘In this paper,wavefield storage optimization strategies are discussed with respect to reverse-time migration(RTM)imaging in reflection-acoustic logging,considering the problem of massive wavefield data storage in RTM itself.In doing so,two optimization methods are proposed and implemented to avoid wavefield storage.Firstly,the RTM based on the excitation-amplitude imaging condition uses the excitation time to judge the imaging time,and accordingly,we only need to store a small part of wavefield,such as the wavefield data of dozens of time points,the instances prove that they can even be imaged by only two time points.The traditional RTM usually needs to store the wavefield data of thousands of time points,compared with which the data storage can be reduced by tens or even thousands of times.Secondly,the RTM based on the random boundary uses the idea that the wavefield scatters rather than reflects in a random medium to reconstruct the wavefield source and thereby directly avoid storing the forward wavefield data.Numerical examples show that compared with other migration algorithms and the traditional RTM,both methods can effectively reduce wavefield data storage as well as improve data-processing efficiency while ensuring imaging accuracy,thereby providing the means for high-efficiency and highprecision imaging of fractures and caves by boreholes.
文摘The effects of exciton-optical phonon interaction on the binding energy and the total and reduced effective masses of an exciton in a cylindrical quantum wire have been investigated. We adopt a perturbative-PLL [T.D. Lee,F. Low, and D. Pines, Phys. Rev. B90 (1953) 297] technique to construct an effective Hamiltonian and then use a variational solution to deal with the exciton-phonon system. The interactions of exciton with the longitudinal-optical phonon and the surface-optical phonon have been taken into consideration. The numerical calculations for GaAs show that the influences of phonon modes on the exciton in a quasi-one-dimensional quantum wire are considerable and should not be neglected. Moreover the numerical results for heavy- and light-hole exciton are obtained, which show that the polaronic effects on two types of excitons are very different but both depend heavily on the sizes of the wire.
文摘It has been known that the static polarizability of a polymer chain with a biexciton is negative. In order to understand this peculiar fact, this paper studies the dynamical process of the charge transfer in the polymer chain induced by an external electric held E during forming the biexciton. The time dependence of the charge distribution in the chain reveals that the charge transfer is backward: the positive charge shifts in the opposite direction of the external electric field. Such a backward charge transfer (BCT) produces an opposite dipole, which makes the polarization negative. The effect of electron interaction on the BCT is illustrated.
基金National Natural Science Foundation of China(NSFC)(11474052,11504049,11774055,61535003)Natural Science Foundation of Jiangsu Province,China(BK20171364)National Key Basic Research Program of China(2015CB352002)
文摘The principle of optical trapping is conventionally based on the interaction of optical fields with linear-induced polarizations. However, the optical force originating from the nonlinear polarization becomes significant when nonlinear optical nanoparticles are trapped by femtosecond laser pulses. Herein we develop the time-averaged optical forces on a nonlinear optical nanoparticle using high-repetition-rate femtosecond laser pulses, based on the linear and nonlinear polarization effects. We investigate the dependence of the optical forces on the magnitudes and signs of the refractive nonlinearities. It is found that the self-focusing effect enhances the trapping ability, whereas the self-defocusing effect leads to the splitting of the potential well at the focal plane and destabilizes the optical trap. Our results show good agreement with the reported experimental observations and provide theoretical support for capturing nonlinear optical particles.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11004069 and 91021011the Doctoral Foundation of the Ministry of Education of China under Grant No.20100142120081the National Basic Research Program of China under Grant No.2012CB922103
文摘Manipulation of spontaneous emission from an atom confined in three kinds of modified reservoirs has been investigated by means of an elliptically polarized laser field. Some interesting phenomena such as the multi-peak structure, extreme spectral narrowing, and cancellation of spontaneous emission can be observed by adjusting controllable system parameters. Moreover, these phenomena depend on the constructive or destructive quantum interference between multiple decay channels and which can be changed appreciably by varying the phase difference between the two circularly polarized components of the probe field. These results demonstrate the importance of an elliptially polarized laser field in controlling the spontaneous emission and its potential applications in high-precision spectroscopy.